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Abstract

Nonlinear Riccati and Ermakov equations are combined to pair the energy spec-
trum of two different quantum systems via the Darboux method. One of the systems
is assumed Hermitian, exactly solvable, with discrete energies in its spectrum. The
other system is characterized by a complex-valued potential that inherits all the
energies of the former one, and includes an additional real eigenvalue in its discrete
spectrum. If such eigenvalue coincides with any discrete energy (or it is located
between two discrete energies) of the initial system, its presence produces no singu-
larities in the complex-valued potential. Non-Hermitian systems with spectrum that
includes all the energies of either Morse or trigonometric Pöschl-Teller potentials
are introduced as concrete examples.

1 Introduction

The search for new integrable models in quantum mechanics has been the subject of
intense activity during the last decades. The trend was firmly stimulated by the Wit-
ten formulation of supersymmetry published in 1981, where a quantum mechanical ‘toy
model’ was introduced as the simplest example of what occurs in quantum field theo-
ries [1]. The model evolved successfully into a thriving discipline that is nowadays known
as supersymmetric quantum mechanics (Susy QM) [2, 3]. Sustained by the factorization
method [4], the supersymmetric approach is basically algebraic [5–8] and permits the
pairing between the spectrum of a given (well known) Hamiltonian to the spectrum of
a second (generally unknown) Hamiltonian. In position-representation, such pairing is
ruled by a transformation introduced by Darboux in 1882 [9]. The latter implies that the
involved potentials differ by an additive term, which in turn is the derivative of a function
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that solves a Riccati equation. Surprisingly, the origin of what later became known as Ric-
cati’s equation can be traced back to 1694, closely related to Bessel’s equation, although
the work of Riccati was published in 1724 [10, 11]. Besides Susy QM and soliton theory
(where the Darboux transformation finds applications other than supersymmetry [12]),
the presence of the Riccati equation is unavoidable in a lot of branches of physics and
mathematics [13]. Its features in the complex domain [14] are the source of new challenges
in controlling the time-evolution of quantum wave packets [15–17] as well as the paraxial
propagation of structured light in optical media with quadratic index profile [18]. The
complex version of the Riccati equation is also useful to strengthen the systematic search
for non-Hermitian quantum systems with real spectrum [19].

On the other hand, the stationary form of Schrödinger equation for one-dimensional
systems is also connected with a nonlinear second-order differential equation introduced
by Ermakov in 1880 [20], and revisited by Milne fifty years after [21]. As in the Darboux
approach, the Ermakov method implies that solving either of the two equations for any
eigenvalue will provide a solution for the other. However, the Ermakov equation is usu-
ally linked to the time-evolution of systems like the isotonic oscillator [22, 23], which is
isochronous to the harmonic one in the classical picture [24] and isospectral to it in the
quantum case [25]. Arnold [26,27] and point [28,29] transformations facilitate the study of
such systems. Nevertheless, the association of Ermakov with Schrödinger in spatial coor-
dinates is rarely reported in the literature. Besides the monograph [13], some exceptions
can be found in [18,19,30–38]. Quite remarkably, only recently such relationship has been
exploited to obtain integrable quantum models with real energy spectrum but described
by non-Hermitian Hamiltonians [19]. A generalization of the oscillation theorem applies
to study the zeros of the real and imaginary parts of the corresponding eigenfunctions [31],
and the introduction of bi-orthogonal bases permits to work with these systems in much
the same way as for the Hermitian ones [32]. The non-Hermitian models so constructed
are either PT-symmetric [39] or not. The main purpose of this work is to increase the
number of solvable models in this direction and to bring to light the repercussion of com-
bining nonlinear Riccati and Ermakov equations in the construction of new integrable
models in quantum mechanics.

The paper is organized as follows: In section 2 we develop the Darboux procedure to
pair the spectrum of two different systems by including interplays between Schrödinger
and Riccati, complex-valued Riccati and Ermakov, and between Ermakov and Schrödinger
equations. In section 3 we present the construction of new complex-valued potentials mod-
eling non-Hermitian systems with the spectrum of either Morse or trigonometric Pöschl-
Teller systems; an additional real eigenvalue is included in each case. In section 4 we
discuss additional profiles of our method and show that the conventional one-step Dar-
boux approach (producing new integrable Hermitian models) is recovered as a particular
case. Of special interest, we also show that the construction of regular complex-valued
potentials is viable even if the Darboux transformation is performed with the solution
associated with an excited energy of the initial problem. Such a feature is not possible
in the conventional one-step Darboux approaches since the validity of the oscillation the-
orem forbids the construction of potentials with no singularities if excited energies are
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used [40]. The paper ends with some concluding remarks.

2 Basic formalism

Within the Darboux approach [9], the second-order differential equation

− ϕ′′ + V0(x)ϕ = Eϕ (1)

can be transformed into a new one

− ψ′′ + V (x)ψ = Eψ (2)

through the functions
V (x) = V0(x) + 2β′, ψ = ϕ′ + βϕ, (3)

where f ′ denotes the derivative of f with respect to x and β is defined by the nonlinear
Riccati equation

− β′ + β2 = V0(x)− ε. (4)

Using
β = −(lnu)′, (5)

the latter equation is linearized

− u′′ + V0(x)u = εu. (6)

In other words, u is a solution of (1) with E = ε. The link (5) between the nonlinear
first order differential equation (4) and the linear second order one (6) is well known in
the literature [10, 14]. This can be also written as the first order differential equation
u′ + βu = 0. Thus, provided a solution of (4), the function

u(x) = const× exp

[
−
∫ x

β(y)dy

]
(7)

solves (6). One can go a step further by adding 2β′ to both sides of (4), then β′ + β2 =
V (x) − ε, where (3) has been used. Instead of (5) we now make β = (lnψε)

′, so the
latter Riccati equation is also linearized: −ψ′′ε + V (x)ψε = εψε. The straightforward
calculation shows that ψε ∝ u−1. In summary, the covariance (1)-(2) revealed by the
Darboux transformation (3) allows new integrable models if the spectrum properties of
either V0(x) or V (x) are already known.

2.1 Schrödinger-Riccati interplay

In quantum mechanics the eigenvalue equation (1) is defined by the energy observable of
a particle with one degree of freedom in the stationary case. For real-valued measurable
functions V0(x), the eigenvalues E are real and the Sturm-Liouville theory applies on the
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eigenfunctions ϕ representing bound states. As indicated above, the method introduced
by Darboux is very useful to construct new solvable potentials V (x). Indeed, if the
solutions of the Schrödinger equation (1) are already known, the energy spectrum of
V0(x) is entirely inherited to V (x) for the appropriate solution of the Riccati equation
(4) [5, 6]. Besides, if ψε ∝ u−1 is physically admissible, the spectrum of V (x) includes
also the eigenvalue ε [5]. In algebraic form, the Darboux transformation (3) results from
the factorization of the Hamiltonians defined by V0(x) and V (x) [5,7], and represents the
kernel of Susy QM [2–4]. Typically, real-valued functions β are used to construct new
Sturm-Liouville integrable equations (2). In such case ε ≤ E0, where E0 is the ground
state energy if V0(x) has discrete spectrum and the low bound of the continuum spectrum
when the bound states are absent [40]. Therefore, the new potential V (x) is real-valued
and defines a Hermitian Hamiltonian. However, this is not the only option permitted
by the method [4]. Indeed, interesting non-Hermitian models arise if β is allowed to be
complex-valued since the entire spectrum of V0(x) is still inherited to V (x) [41–46].

In the following we show that the relationship between β and u is not uniquely de-
termined by the logarithmic derivative (5). Our approach brings to light some nonlinear
connections between the systems associated with V0(x) and those defined by V (x) that
are hidden in the conventional way of dealing with Eqs. (1)-(3).

2.2 Riccati-Ermakov interplay

Let us look for complex-valued solutions β = βR + iβI of the Riccati equation (4) with
ε ∈ R. Here βR and βI are real-valued functions to be determined. Following [19] we see
that the real and imaginary parts of Eq. (4) lead to the coupled system

− β′R + β2
R − β2

I + ε− V0(x) = 0, (8)

− β′I + 2βIβR = 0. (9)

Rewriting (9) as (ln βI)
′ = 2βR, one immediately notice that βR = −(lnα)′ gives rise to

the expression βI = λ
α2 , where λ ∈ R is a constant of integration and α is a function to be

determined. To avoid singularities in βR and βI we shall consider real-valued α-functions
with no zeros in DomV0 ⊆ R. Notice however that α is permitted to be purely imaginary
also. The introduction of βR and βI into (8) gives the nonlinear second order differential
equation

α′′ = [V0(x)− ε]α +
λ2

α3
, (10)

which is named after Ermakov [20]. Provided a solution of (10), the complex-valued
function we are looking for is

βλ = −(lnα)′ + i
λ

α2
. (11)

The sub-label of β indicates that it is separable into βR and βI only when λ 6= 0. Indeed,
λ = 0 reduces (10) to the linear equation (6), and brings (11) to its usual form (5).
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2.3 Ermakov-Schrödinger interplay

Hereafter we take λ 6= 0 and assume that up is a particular solution of (6). To construct
α we follow [20] and eliminate V0(x)− ε from (10) and (6). It yields the equation

W ′(up, α) =
λ2up
α3

, (12)

where W (up, α) = upα
′ − u′pα is the Wronskian of up and α. Multiplying both sides of

(12) by 2W (up, α), and making a simple integration we have

J = W 2(up, α) +

(
λup
α

)2

, (13)

where J is an integration constant1. As we have no way to fix the value of J a priori, let
us consider J = 0 and J 6= 0 separately. In the former case Eq. (13) is reduced to

W (up, α0) = ±iλup
α0

. (14)

The sub-label of α means J = 0. Solving (14) for up we obtain (remember λ 6= 0):

up(x) = c0α0(x) exp

[
∓iλ

∫ x

α−20 (y)dy

]
, (15)

with c0 an integration constant. This result is consistent with [37,38]. To get new insights
on the properties of Eq. (14) let us rewrite it in simpler form

d

dx

(
α0

up

)2

= ±i2λ
u2p
, (16)

where we have used

W (u, α) = u2
(α
u

)′
. (17)

After integrating (16) we arrive at

α2
0(x) = ±i2λ [up(x)q(x)]up(x) + cαu

2
p(x), (18)

with cα an integration constant, and

q(x) =

∫ x

u−2p (y)dy. (19)

Equation (18) reveals that α0 is not only connected with the particular solution up, but
it is indeed associated with a fundamental pair of solutions of (6). For if the wronskian

1The structure of J coincides with the invariant I found by Lewis for the time-evolution of the isotonic
oscillator [23]. Indeed, after the identification x → t, one may be tempted to find a ‘physical’ meaning
for J (see for instance [37] and the discussion on the matter offered in [38]). However, although J plays
a central role in our approach, we shall take it just as it is: an integration constant.
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W (up, v) = ω0 is a constant different from zero, it may be proven that v(x) = ω0up(x)q(x)
is a second linearly independent solution of (6) [47]. Therefore, α0 is expressed in terms
of the basis up and v as follows

α0(x) = ±
[
±i2λ
ω0

v(x)up(x) + cαu
2
p(x)

]1/2
. (20)

On the other hand, for J 6= 0 it is convenient to rewrite Eq. (13) as

± 2

u2p

[
J

(
α

up

)2

− λ2
]1/2

=
d

dx

(
α

up

)2

, (21)

where we have used (17). The proper rearrangements and a simple integration produce

Jq(x) + I0 = ±

[
J

(
α

up

)2

− λ2
]1/2

, (22)

with I0 a new integration constant. Now we can solve (22) for α to get

α(x) = ±
[
av2(x) + bv(x)up(x) + cu2p(x)

]1/2
. (23)

A simple calculation shows that the set

a =
J

ω2
0

, b = 2
I0
ω0

, c =
λ2 + I20
J

, (24)

satisfies 4ac − b2 = 4(λ/ω0)
2 [19]. Although the structure of (20) and (23) is quite

similar, some caution is necessary to recover α0 from α since c may be ill defined for
J = 0. To get some insight on the matter consider the limit J → 0 in (22); this yields
I0 → ±iλ. Consequently b → ±i 2λ

ω0
, which is the coefficient of v(x)up(x) in (20), and

a→ 0. Therefore, if c→ const as J → 0, we can take c→ cα to get α→ α0.

For simplicity, in the sequel we take a, b, c ∈ R (equivalently, the integration constants
J 6= 0, I0, as well as ω0, are real). Since λ 6= 0 we immediately see that ac > (b/2)2. Thus,
a and c will have the same sign (which is determined by J 6= 0) and both are different
from zero. In turn, b is permitted to be any real number. As indicated above, the α-
function can be purely imaginary in (11). This occurs if, for instance, b = 0 and J < 0.
Although it is not necessary, we shall take J > 0 to have real-valued α-functions (for the
examples discussed in the next sections the sign of I0 does not affect such a condition).
In addition, without loss of generality, we shall take the root ‘+’ of (23) as the α-function
of our approach.

2.4 Properties of the fundamental solutions

Provided α, the new potential V (x) is complex-valued and parameterized by λ,

Vλ(x) = V0(x)− 2(lnα)′′ + i2

(
λ

α2

)′
. (25)
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To show that α is free of zeros in DomV0 let us suppose that α = 0 in any interval
I ⊂ DomV0, which may be of measure zero. From (23) we see that this implies v =
1
2a

(−b ± i 2λ
ω0

)up for x ∈ I. In other words, v should differ from up by a multiplicative
constant in I. However, this is not possible since up and v are linearly independent in
DomV0. On the other hand, given a bound state ψ of potential (25), the conventional
notions of probability density ρ = |ψ|2 and probability current J = i

(
ψ ∂ψ∗

∂x
− ∂ψ

∂x
ψ∗
)

lead

to the continuity equation ∂J
∂x

+ ∂ρ
∂t

= 2ImVλ(x) [30]. Integrating over DomV0 (at time t0)
we see that J is twice the area defined by ImVλ(x). If such area is reduced to zero then the
total probability is conserved, although spatial variations of J may be not compensated
by temporal variations of ρ locally. In this context the condition of zero total area [31],∫

DomV0

ImVλ(x)dx =
2λ

α2

∣∣∣∣
DomV0

= 0, (26)

ensures conservation of total probability.

We would like to emphasize that one-dimension potentials featuring the parity-time
(PT) symmetry represent a particular case of the applicability of (26). Such potentials are
invariant under parity (P) and time-reversal (T) transformations in quantum mechanics
[39]. The former corresponds to spatial reflection p → −p, x → −x, and the latter to
p→ −p, x→ x, together with complex conjugation i→ −i. Thus, a necessary condition
for PT-symmetry is V (x) = V ∗(−x), where ∗ stands for complex conjugation. For initial
potentials V0(x) such that V0(x) = V0(−x), one can show that making b = 0 in (23)
is sufficient to get Vλ(x) = V ∗λ (−x); some examples are given in Section 3. In other
words, PT-symmetry is a consequence of (26) in our approach, so this symmetry is not
a necessary condition to get complex-valued potentials with real spectrum in general.
Therefore, potentials Vλ(x) that satisfy (26) can be addressed to represent open quantum
systems with balanced gain (acceptor) and loss (donor) profile [48], no matter if they are
PT-symmetric or not.

In our model condition (26) is satisfied by using α-functions that diverge at the edges
of DomV0. In such case the complex-valued eigenfunctions ψ(x) that are obtained from
the transformation of bound states ϕ(x) can be normalized in conventional form [19].
Then, |ψ(x)|2 defines a finite area in any interval of DomV0 and the distribution of its
maxima is quite similar to that of the conventional probability densities [31]. Moreover,
it can be shown that the real and imaginary parts of ψ(x) obey interlacing theorems that
are very close to those satisfied by ϕ(x) [31]. The latter permits a bi-orthogonal approach
in which the spectral properties of Vλ(x) can be studied in much the same way as in the
real-valued case [32]. For practical purposes, instead of the conventional normalization,
we shall use the bi-normalization introduced in [32] for the eigenfunctions ψ(x) that are
associated with discrete energies (the quantitative difference is short). In the sequel, all
the eigenfunctions of Vλ(x) will be written as ψλ(x). Additional labels may be included
to distinguish between bound and other kind of energy states.

To conclude this section let us introduce (11) into (7), the result is a seed function u
that is now labeled by λ. As indicated above, the reciprocal of uλ gives ψλε ∝ u−1λ , which
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is a solution of (2) for E = ε. Using Eq. 2.172 of [49], after some simplifications, we obtain

ψλε (x) =
cε

α2(x)

[
1

c

(
λ

ω0

− i b
2

)
v(x)− iup(x)

]
, (27)

where the constant cε may be fixed by normalization.

3 Examples

The following examples consider potentials V0(x) that include discrete eigenvalues in their
energy spectra. We shall focus on the discrete energies of the new potentials Vλ(x); the
study of scattering states, if they are included in the spectrum of V0(x), will be reported
elsewhere. Two cases of V0(x) are analyzed: the Morse potential, which is defined over
all the real line and allows discrete as well as scattering energies, and the trigonometric
Pöschl-Teller potential, which is finite in a concrete interval of R, and admits discrete
spectrum only. Our purpose is to illustrate that the method introduced in the previous
sections works very well in any domain DomV0 ⊆ R.

3.1 Morse potentials

The eigenvalue equation (1) for the Morse potential (see Fig. 1),

V0(x) = Γ0(1− e−γx)2, Γ0, γ > 0, DomV0 = R, (28)

admits the fundamental set of solutions

up(y) = e−y/2yσ1F1

(
σ +

1

2
− d; 1 + 2σ; y

)
, (29)

v(y) = e−y/2y−σ1F1

(
−σ +

1

2
− d; 1− 2σ; y

)
, (30)

Figure 1: Morse potential (28) of depth (32) with γ = 1, δ = 0.4, N = 2 (left) and N = 4 (right). This
kind of potentials permits the presence of N + 1 bound states. In each case the allowed discrete energies
(33) are ticked on the right-vertical scale.
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where 1F1(a, c; z) stands for the hypergeometric confluent function [50], and

y = 2de−γx, d2 =
Γ0

γ2
, σ =

Γ2
0 − E
γ2

. (31)

A straightforward calculation shows that W (up, v) ≡ w0 = 2
√

Γ0 − E. To determine the
bound states it is convenient to rewrite the potential depth Γ0 as

Γ0 = γ2(N + δ + 1/2)2, N ∈ Z+ ∪ {0}, 0 < δ < 1. (32)

Potentials (28) with depth (32) are depicted in Fig. 1 for N = 2 and N = 4.

The set of discrete energies is therefore finite and defined by the expression

En = γ2
[
(2n+ 1)(N + δ + 1/2)− (n+ 1/2)2

]
, n = 0, 1, . . . , N. (33)

The corresponding eigenfunctions are obtained from up with σ + 1
2
− d = n ∈ Z+ ∪ {0},

ϕn(y) = Cne−y/2yαnL(2αn)
n (y), n = 0, 1, . . . , N, (34)

where L
(α)
n (z) stands for the associated Laguerre polynomials [50], and

αn = d− 1/2− n, C2n =
γ(2d− 1− 2n)n!

Γ(2d− n)
. (35)

Note that we have fixed N = nmax = bd − 1/2c, with bac the floor function [50]. The
bound states for N = 2 are shown in Fig. 2.

Figure 2: The bound states (34) of the Morse potential depicted in Fig. 1 (N = 2) with n = 0 (solid),
n = 1 (dashed), and n = 2 (dotted).

Now, to construct a complex-valued potential Vλ(x) from the Morse family (28) we
may make ε < E0 = γ2(N + δ + 1/4). The discrete energy spectrum of such system is
also finite, and includes N + 2 eigenvalues

Eλ
0 = ε, Eλ

n+1 = γ2
[
(2n+ 1)(N + δ + 1/2)− (n+ 1/2)2

]
, n = 0, 1, . . . , N. (36)

The new potential is shown in Fig. 3 for ε = 0 and two different values of N . Notice that
ReVλ(x) is very close to the Morse potential at the edges of R. Besides, such a function
exhibits a very localized deformation that serves to host the additional energy Eλ

0 = 0.
In turn, ImVλ(x) satisfies the condition of zero total area (26). Clearly, these potentials
are not eligible for PT-transformations.
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(a) N = 2 (b) N = 4

Figure 3: (Color online) Real (blue-solid) and imaginary (red-dashed) parts of Vλ(x), which is generated
from the Morse potentials (black-dotted) of Fig. 1. Here, λ = J = I0 = 1, and ε = 0. The ticks on the
right-vertical scale refer to the discrete energies (36).

The related bi-normalized complex-valued eigenfunctions ψλn(x) are depicted in Fig. 4.
These new functions do not form an orthogonal set but the zeros of their real and imag-
inary parts are interlaced according to the theorems reported in [31]. Namely, between
two zeros of Reψλn+1 there is always a zero of Imψλn+1, with n = 0, 1, . . . , N.

• Oscillator potentials. Departing from the ‘mathematical’ oscillator V0(x) = x2, one
recovers the family of complex-valued oscillators Vλ(x) introduced in [19] and studied
in [30–32]. Since the Morse potential (28) converges to x2, it may be shown that the
complex-valued potentials derived in this section converge to the oscillators reported in
[19] at the appropriate limit.

3.2 Trigonometric Pöschl-Teller potentials

The eigenvalue equation (1) for the trigonometric Pöschl-Teller potential (see Fig. 5),

V0(x) =

 U2
0

r(r−1)
cos2(U0x)

x ∈
(
− π

2U0
, π
2U0

)
+∞ otherwise

, r > 1, U0 > 0, (37)

is solved by the linearly independent functions

up(x) = cosr(U0x) 2F1

[
a, b, c; sin2(U0x)

]
, (38)

v(x) = cosr(U0x) sin(U0x) 2F1

[
a +

1

2
, b +

1

2
, c + 1; sin2(U0x)

]
, (39)

where 2F1(a, b, c; z) is the hypergeometric function [50], with

a =
1

2

(
r +

√
E

U0

)
, b =

1

2

(
r −
√
E

U0

)
, c =

1

2
. (40)

The hypergeometric functions in (38) and (39) are linearly independent at the regular
singularity z = 0 of the hypergeometric equation. The one in (38) is the only which
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(a) ψλ0 (x) (b) ψλ1 (x) (c) ψλ2 (x)

(d) ψλ0 (x) (e) ψλ1 (x) (f) ψλ2 (x)

Figure 4: (Color online) Real (blue-solid) and imaginary (red-dashed) parts of the eigenfunctions ψn(x)
associated with potentials of Fig. 3 for the indicated values of n, with N = 2 (upper row), N = 4 (lower
row). For the sake of visibility, the plots of the imaginary parts in (b), (e), and (f) have been rescaled by
a factor of 10, 100 and 10, respectively. The insets in (c), (e), and (f) show the interlacing of zeros for
the corresponding functions.

Figure 5: Trigonometric Pöschl-Teller potential (37) for U0 = 1 with r = 3 (left) and r = 4 (right). In
each case the ticks on the right-vertical scale refer to the discrete energies (43).

is analytic at z = 0. For the function defining v(x) in (39), z = 0 is a branch point.
Using the Wronskian of such functions (c.f. Eq. 15.10.3 of [50]) it can be proven that
W (up, v) ≡ ω0 = U0. Then, the physical solutions are obtained by studying the behavior
of 2F1(a, b, c; z) with argument unity. As c − a − b < 0, we use Eq. 15.8.4 of [50] and
realize that up(x) satisfies the boundary conditions if either a or b is a negative integer.
The latter leads to the even bound states (see Fig. 6),

ϕ2n(x) = ν2n cosr(U0x) 2F1

[
−n, r + n, 1

2
; sin2(U0x)

]
. (41)

In turn, if either a+ 1
2

or b+ 1
2

is a negative integer, the function v(x) gives the odd bound
states (see Fig. 6),

ϕ2n+1(x) = ν2n+1 cosr(U0x) sin(U0x) 2F1

[
−n, r + n+ 1, 3

2
; sin2(U0x)

]
. (42)

The symbol νn in the above expressions stands for the normalization constant. The energy
spectrum of trigonometric Pöschl-Teller potential (37) is therefore defined by the discrete
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Figure 6: First eigenfunctions (41)-(42) of the trigonometric Pöschl-Teller potential depicted in Fig. 5
(r = 3) with n = 0 (solid), n = 1 (dotted), and n = 3 (dashed).

set
En = U2

0 (n+ r)2, n = 0, 1, 2, . . . (43)

(a) r = 3 (b) r = 4

Figure 7: (Color online) Real (blue-solid) and imaginary (red-dashed) parts of the PT-symmetric version
of potentials depicted in Fig. 5 (black-dotted). Here J = π/4, I0 = 0, and λ =

√
π/4. The ticks on the

right-vertical scale refer to energies (44), with ε = 1/4.

In the present case we use ε < E0 = U2
0 r

2 to generate complex-valued potentials Vλ(x)
that include the set (43) in their energy spectrum. That is, the energy eigenvalues of
Vλ(x) are defined by the denumerable set

Eλ
0 = ε, Eλ

n+1 = U2
0 (n+ r)2, n = 0, 1, 2, . . . (44)

(a) ψλ0 (x) (b) ψλ1 (x) (c) ψλ2 (x)

Figure 8: (Color online) Real (blue-solid) and imaginary (red-dashed) parts of the first three eigenfunc-
tions belonging to the PT-symmetric potential (r = 3) depicted in Fig. 7.

As regards the complex-valued deformations of trigonometric Pöschl-Teller poten-
tial (37), they can be constructed to be either invariant or not invariant under PT-
transformations since V0(x) is even. The former case is shown in Fig. 7 for two different
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values of the parameter r. In both cases ReVλ(x) is even, with a very localized symmetric
deformation that permits the presence of the new energy ε (in the figure, ε = 1/4). In
turn, ImVλ(x) is odd and satisfies the condition of zero total area (26). That is, the
spatial reflection of ImVλ(x) is compensated by the complex conjugation (i → −i). The
first three eigenfunctions of such potential are depicted in Figure 8 for r = 3. Notice that
they satisfy the interlacing theorems indicated in [31].

(a) r = 3 (b) r = 4

Figure 9: (Color online) Real (blue-solid) and imaginary (red-dashed) parts of the complex-valued
potentials Vλ(x) associated with those of Fig. 5 (black-dotted). The parameters are J = 1.34, I0 = −2.13,
and λ =

√
1.34. The ticks on the right-vertical scale refer to energies (44), with ε = 8.075.

On the other hand, Figure 9 includes two examples of complex-valued Pöschl-Teller
potentials Vλ(x) that are not invariant under PT-transformations. In this case the defor-
mation of ReVλ(x) is asymmetrical, although this continues to host the new energy level
ε (in the figure, ε = 8.075). In addition, ImVλ(x) still satisfies the condition of zero total
area (26) but it is also asymmetrical.

(a) ψλ0 (x) (b) ψλ1 (x) (c) ψλ2 (x)

Figure 10: (Color online) Real (blue-solid) and imaginary (red-dashed) parts of the first three eigen-
functions of the complex-valued potential (r = 3) depicted in Fig. 9.

The first three eigenfunctions of these non PT-symmetric potentials are depicted in
Fig. 10 for r = 3 and the parameters of Fig. 9. We can appreciate that Reψn+1 has a
zero between two zeros of Imψn+1, so the theorems presented in [31] are satisfied.

4 The quest of new models

The approach presented in sections 2.3 and 2.4 has been addressed to get complex-valued
potentials Vλ(x) with real energy spectrum, no matter if they are PT-symmetric or not.
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In such a trend it is necessary to take λ 6= 0. However, the method is general enough to
include conventional transformations and produce new integrable potentials of real value
as well. Indeed, as indicated above, λ = 0 brings βλ=0 to its conventional form (5) since
Imβλ = λ/α2 becomes zero in (11). Remarkably, even in this case the α-function is defined
by (23), with c reduced to c = I20/J in (24). In turn, the relationship between a, b and c
becomes simpler b = ±2

√
ac, so α is reduced to the linear superposition

α(x) =
√
av(x)±

√
cup(x) =

√
aω2

0up(x)

[∫ x

u−2p (y)dy ± I0
J

]
. (45)

(a) γM = 1.35 (b) γM = 0.74

Figure 11: (Color online) Real-valued Darboux deformations (blue-solid) of the trigonometric Pöschl-
Teller potential (black-dotted) for r = 3 and U0 = 1, with λ = 0, ε = 5.26. The indicated values of
γM = I0/J correspond to I0 = 3.701, with J = 2.74 (a) and J = 5 (b).

The last result verifies that our approach includes the one-step Darboux deformations
introduced in [5] to construct one-parameter families of solvable real-valued potentials.
That is, (45) gives rise to the general real-valued solution of the Riccati equation (4),
where the quotient ±I0/J corresponds to the integration constant associated with two
successive quadratures [10]. In the Milenik’s approach [5], the quantity γM = |I0/J | is
defined such that (45) is free of zeros in DomV0, and parameterizes the family of real-
valued potentials Vλ=0(x; γM) that is constructed from V0(x) [4, 51, 52]. As immediate
example we show in Fig. 11 a pair of real-valued potentials Vλ=0(x; γM), constructed from
the trigonometric Pöschl-Teller system (37). The spectrum of these potentials is still given
by (44) and their eigenfunctions are also constructed from (41)-(42) with the help of (3).

On the other hand, our method permits also the construction of complex-valued poten-
tials Vλ(x) for which the ‘new’ energy ε is added at any position of the discrete spectrum
of V0(x). To be precise, in conventional one-step approaches (Darboux transformations,
intertwining techniques, factorization method, Susy QM, etc) the seed function u satis-
fies (6) with ε ≤ E0, where E0 is either the ground state energy or the low bound of
the continuum spectrum of V0(x) [40]. However, if En < ε ≤ En+1, the seed function u
has nodes in DomV0 that produce singularities in the new potential V (x) = V0(x) + 2β′.
The problem has been circumvented by introducing irreducible second-order (two-step
Darboux) transformations where two different energies fulfilling En ≤ ε1 < ε2 ≤ En+1

are added [40]. Yet, the limit ε2 → ε1 permits to avoid the problem in elegant form
and gives rise to the confluent version of Susy QM [53]. Additional results on two-step
Darboux transformations can be found in e.g. [54–56]. Nevertheless, staying in the first
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order approach, the oscillation theorems satisfied by the seed function u with eigenvalue
En ≤ ε ≤ En+1 prohibit the construction of real-valued potentials V (x) that are free of
singularities in DomV0 [40]. The situation is different for the complex-valued potentials
Vλ(x) since the nonlinear superposition of up and v removes the possibility of zeros in
(23), so the function (25) is regular on DomV0 ⊂ R.

(a) ε = E1+E0

2 (b) ε = E1+E0

2 , λ = 0

(c) ε = E1 (d) ε = E1, λ = 0

Figure 12: (Color online) Potentials generated from the Morse system (28) by embedding the ‘new’
energy ε in the interval E0 ≤ ε ≤ EN , defined by the N + 1 discrete energies (33) of bound states (34),
at the indicated positions. In all cases γ = 1, δ = 0.4, N = 2 and J = I0 = 1. The left column includes
complex-valued potentials with λ = 1 and the right one shows the real valued potentials with λ = 0.

As example consider the potentials shown in Fig. 12. In all cases we have used the
Morse system (28) with N = 2 as the initial potential V0(x). The upper row includes
potentials generated with ε = E1+E0

2
and either λ 6= 0 or λ = 0, Figs. 12(a) and 12(b)

respectively. In both cases the energy spectrum is given by Eλ
0 = E0, E

λ
2 = E1, E

λ
3 =

E2, plus the new eigenvalue Eλ
1 = ε that is located between the ground (E0) and first

excited (E1) energies of the initial system. The real-valued potential Vλ=0(x; γM) shown
in Fig. 12(b) is singular at two different points of DomV0. This is a consequence of the
oscillation theorem obeyed by the general solution (45) of Eq. (6) with E0 ≤ ε ≤ E1. In
Susy QM one says that such a potential is ill defined since DomV0 is not preserved by the
Darboux transformation of V0(x) [57]. Clearly, this is not the case of the complex-valued
potential Vλ(x) depicted in Fig. 12(a) since it is regular on R. In this case, the nonlinear
superposition (23) regularizes the behavior of ReVλ(x) and ImVλ(x). Besides, at the points
where Vλ=0(x; γM) is singular, the α–function (23) produces only local deformations in
ReVλ(x) and ImVλ(x).

A similar situation holds for the potentials depicted on the lower row of Fig. 12. There
the ‘new’ energy ε is located exactly at the position of the first excited energy of V0(x),
so the new potentials are exactly isospectral to the Morse system (28) with N = 2. The
real-valued potential Vλ=0(x; γM) of Fig. 12(d) is ill defined since it has two singularities
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in DomV0. In contrast, the complex-valued potential shown in Fig. 12(c) is regular on R
with local variations of its real and imaginary parts.

The above examples show that our method produces results that are not available
in the conventional one-step Darboux approaches. The complex-valued potentials Vλ(x)
are regular even if ε is embedded in the discrete spectrum of V0(x), located at arbitrary
positions of En ≤ ε ≤ En+1 for any n = 0, 1, . . . However, some caution is necessary
since the state ψε(x), although normalizable in the conventional form, may be of zero
binorm [19]. The latter is neither accidental nor rare in physics [58], so it deserves special
attention [59] and will be discussed in detail elsewhere.

5 Summary and outlook

We demonstrated that the combination of nonlinear complex-Riccati and Ermakov equa-
tions brings out some subtleties of the Darboux theory that are hidden in the conventional
studies of integrable models in quantum mechanics. Within this generalized Darboux ap-
proach, we have constructed complex-valued potentials that represent non-Hermitian sys-
tems with real energy spectrum, no matter if they are PT-symmetric or not. We provided
new systems with the discrete energy spectrum of either Morse or trigonometric Pöschl-
Teller potentials as concrete examples. The conventional one-step Darboux approach,
giving rise to new solvable Hermitian models, is easily recovered from that introduced
here by the proper choice of parameters.

A striking feature of our method is the possibility of adding a real eigenvalue ε that
may coincide with the energy En of any excited bound state of V0(x) without producing
singularities in the new complex-valued potential Vλ(x). Remarkably, this is not possible
in conventional one-step Darboux approaches since the oscillation theorem prevent the
use of discrete energies, other than E0, to produce new potentials with no singularities. In
this context, it is to be expected that our method can be applied to study the emergence
of exceptional points [60] in the scattering energies of complex-valued potentials.

Other applications may include the study of electromagnetic signals propagating in
waveguides, where the Helmholtz equation is formally paired with the Schrödinger one [61,
62]. In such a picture the complex-valued potential Vλ(x) can be identified with a refractive
index of balanced gain/loss profile [48]. The study of non-Hermitian coherent states
associated with finite-dimensional systems [63] is also available. Finally, the approach
can be extended either by applying conventional one-step Darboux transformations on
the complex-valued potential Vλ(x) or by iterating the procedure presented in this work.
Further insights may be achieved from the Arnold and point transformations [26–29].
Results in these directions will be reported elsewhere.
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[27] J. Guerrero and F.F. López-Ruiz, On the Lewis-Riesenfeld (Dodonov-Man’ko) in-
variant method, Phys. Scr. 90 (2015) 074046.

[28] F. Güngor and P.J. Torres, Lie point symmetry analysis of a second order differential
equation with singularity, J. Math. Anal. Appl. 451 (2017) 976.

18
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