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Level crossings of eigenvalues of the Schrödinger Hamiltonian of the isotropic harmonic
oscillator perturbed by a central point interaction in different dimensions
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In this brief presentation, some striking differences between level crossings of eigenvalues in one dimension (harmonic or conic oscillator with

a central nonlocal δ′-interaction) or three dimensions (isotropic harmonic oscillator with a three-dimensional delta located at the origin) and

those occurring in the two-dimensional analogue of these models will be highlighted.
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1. Introduction

The aim of this note is to compare the discrete spectrum of the isotropic harmonic oscillator perturbed by a
point interaction centered at the origin, the bottom of a parabolic well, across various dimensions. The physical
motivation behind this detailed study is the fact that this Hamiltonian, at least in the three-dimensional case, has
been used over the last twenty years to model two-dimensional quantum wires and three-dimensional quantum
dots.

It is important to point out and is well known that, while in two or three dimensions there is only one type of
point interaction, namely the 2/3D delta (requiring a renormalization procedure if it is to be a perturbation of the
negative Laplacian or any other free Hamiltonian), in one-dimensional Quantum Mechanics we have four different
types of point interactions, out of which, the only one requiring such renormalization is the nonlocal δ′−interaction,
defined by its quadratic form (·, |δ′〉 〈δ′| , ·) (see [1–3]). A self-adjoint Hamiltonian with the nonlocal δ′−interaction
can also be defined as the norm resolvent limit of a Hamiltonian involving three Dirac distributions (see [4–6]).
We remind the reader that this interaction, being an element of H−2\H−1, may not be combined with the Dirac
distribution, obviously an element of H−1 (the reader is referred to [2] for a thorough description of the Sobolev
spaces labelled by a negative index).

While the spectral features of the three-dimensional isotropic oscillator perturbed by a single point interaction
centered at the origin have been extensively investigated (see [7–10]), less attention has been paid to those of its
two-dimensional analog. The remarkable spectral feature of the three-dimensional case is the existence of level
crossings: each eigenvalue created by the point perturbation, clearly affecting only the s-states of the model,
regarded as a function of either the parameter α labelling the possible self-adjoint extensions or its reciprocal β
(acting as the coupling constant), crosses the next lower unperturbed energy level (pertaining to an antisymmetric
state with an odd value of the total angular momentum). Even more remarkable, all the level crossings take place
for the same coupling parameter value.

As was shown in [11] (respectively [12, 13]), level crossings also occur in the entirely discrete spectrum of
the one-dimensional harmonic (respectively conic) oscillator perturbed by a nonlocal δ′-interaction. This one-
dimensional model shares the property of having all the crossings situated at the same point when either the
extension parameter or the coupling parameter is chosen. However, the nature of such crossings is different from
the aforementioned in three dimensions, as the eigenenergy of each antisymmetric bound state, regarded as a
function of either the extension parameter α, labeling the self-adjoint extensions, or the coupling β, its reciprocal,
crosses the next lower unperturbed energy level (pertaining to a symmetric state). With reference to the terminology
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introduced in [14], one could describe the one-dimensional model as Fermionic and the three-dimensional model
as Bosonic.

Therefore, we believe it may be worth investigating the spectral properties of the two-dimensional analog in
depth given the increasing importance of this particular dimension in modern Nanophysics. As expected, level
crossings also occur in the two-dimensional case. However, it will be seen that the location of these crossings is
no longer at a unique parameter value. Furthermore, while in odd dimensions the interaction must be attractive in
order to produce the crossings, a weaker repulsive interaction will suffice in the two-dimensional model.

2. Level crossings in the discrete spectrum of the one-dimensional harmonic or conic oscillator perturbed
by a central nonlocal δ′-interaction

In this section, we shall review the findings of [11] (respectively [12, 13]) showing the occurrence of level
crossings in the discrete spectrum of the harmonic (resp. conic) oscillator perturbed by a nonlocal δ′−interaction
centred at the minimum of the parabolic (resp. V-shaped) potential.

It is well known that the Schrödinger Hamiltonian perturbed by a Dirac distribution need not be defined
by means of renormalization, since such a perturbation is infinitesimally small in the sense of quadratic forms
(see [1, 2]). Therefore, the Dirac distribution can be regarded as an element of H−1.

As anticipated earlier, the nonlocal δ′-perturbation of the one-dimensional negative Laplacian, being an element
of H−2\H−1, requires instead either the self-adjoint extension method or coupling constant renormalisation to
produce a self-adjoint Hamiltonian (see [1, 2]).

The spectral effects of such a singular perturbation on the harmonic oscillator were studied in [11] starting

from the explicit expression for the resolvent of the self-adjoint operator Hβ acting like H0 =
1

2

[
− d2

dx2
+ x2

]
on

the functions satisfying the condition ψ(0+)− ψ(0−) = −βψ′(0):

[Hβ − E]
−1

= [H0 − E]
−1

+
2 |Ψ(E)〉 〈Ψ(E)|

1
β −

1
β0

+ 2Γ(3/4−E/2)
Γ(1/4−E/2)

, (1)

with β0 =
Γ(1/4)

2Γ(3/4)
u 1.47934 and:

Ψ(x;E) =

∞∑
n=0

(2n+ 1)1/2ψ2n(0)

(2n+ 3/2− E)
ψ2n+1(x), (2)

ψn(x) being the n-th normalized eigenfunction of the harmonic oscillator. The latter function, having a jump
discontinuity satisfying the condition ψ(0+)− ψ(0−) = −βψ′(0), is square summable since the sequence ψ2n(0)

behaves like n−1/4 as n→∞. Hence, the equation determining the bound state energies of Hβ is:

1

β0
− 1

β
=

2Γ(3/4− E/2)

Γ(1/4− E/2)
. (3)

Clearly, given that the perturbation does not affect the symmetric subspace, the even eigenvalues E2n =
2n + 1/2 of the unperturbed harmonic oscillator are still in the discrete spectrum for any value of β. Each new
odd energy level created by the perturbation is a decreasing function of the coupling parameter β (as can be easily
seen by means of implicit differentiation), namely E2n+1(β). For β = 0, the operator trivially coincides with H0,
so the odd eigenvalues are also those of the harmonic oscillator E2n+1 = 2n+ 3/2. Something remarkable occurs
for β = β0: as the left hand side of (3) vanishes, the only values of the energy that can satisfy (3) are those
that make the Gamma function in the denominator diverge, which implies that 1/4 − E/2 = −n, or equivalently
E2n+1(β0) = 2n+1/2. Therefore, the discrete spectrum of Hβ0

consists only of the doubly degenerate eigenvalues
E2n(β0) = E2n+1(β0) = 2n+ 1/2. As E2n+1(β) < E2n(β) = 2n+ 1/2 for any β > β0, we have infinitely many
level crossings to the right of the critical value β0 of the coupling parameter. The plot shown in Fig. 1 depicts the
three lowest level crossings.

It is worth pointing out from a physical point of view that, since the symmetry of the ground state eigenfunc-
tion changes from symmetric to antisymmetric for any β > β0, the model exhibits a quantum phase transition.
Furthermore, the effect produced by the singular δ′−perturbation is far stronger than the Zeldovich effect produced
by the δ−interaction due to the fact that the horizontal asymptotes of the curves are situated below the horizontal
lines pertaining to the unperturbed symmetric eigenvalues (see [15–17] for a detailed description of the spectrum
of the 1D harmonic oscillator perturbed by Dirac distributions).
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FIG. 1. The curves of the four lowest eigenenergies of Hβ as functions of the coupling param-

eter β, and the level crossings occurring at β = β0 =
Γ(1/4)

2Γ(3/4)
u 1.47934. The horizontal

lines are the even energy levels of the unperturbed harmonic oscillator: E0 = 1/2 (yellow),
E2 = 5/2 (green), E4 = 9/2 (red)

The same spectral pattern has recently been encountered in the discrete spectrum of the self-adjoint Hamiltonian

of the conic oscillator Hc
β acting like Hc

0 =
1

2

[
− d2

dx2
+ |x|

]
on functions satisfying the condition ψ(0+)−ψ(0−) =

−βψ′(0), whose resolvent is explicitly given by (see [12, 13] for the procedure requiring renormalization needed
to define Hc

β):

[
Hc
β − E

]−1
= [H0 − E]

−1
+

|Ψc(E)〉 〈Ψc(E)|
1
β −

Ai(0)Ai′(−2E)−Ai′(0)Ai(−2E)
Ai(0)Ai(−2E)

, (4)

with:

Ψc(x;E) =
1

21/2

∞∑
n=1

ψ2n(x)

(E2n − E)
, (5)

where ψ2n(x) is the 2n-th normalized eigenfunction (pertaining to an antisymmetric bound state) of Hc
0 and E2n

the corresponding eigenvalue, fully investigated in [18]. The function Ψc(x;E) is also a square summable function
since the sequence (E2n−E)−1 behaves like n−2/3 as n→∞ and has a jump discontinuity at the origin satisfying
the condition ψ(0+)− ψ(0−) = −βψ′(0).

As a consequence, the bound state equation reads:

1

β
=

Ai(0)Ai′(−2E)−Ai′(0)Ai(−2E)

Ai(0)Ai(−2E)
, (6)

or equivalently:

β =
Ai(0)Ai(−2E)

Ai(0)Ai′(−2E)−Ai′(0)Ai(−2E)
. (7)

Given that Ai′(−2E2n−1) = 0 for any n ≥ 1, it follows that, if the energy is exactly equal to any odd
eigenvalue (pertaining to a symmetric bound state), the right hand side of (7) is equal to:

βc0 = − Ai(0)

Ai′(0)
, (8)

which implies that such eigenvalues cause the denominator of the rank one operator on the right hand side of (4)

for the special value of the coupling parameter β = βc0 = − Ai(0)

Ai′(0)
u 1.37172 to vanish. This leads to their double

degeneracy as eigenvalues of the Hamiltonian Hc
βc
0

and the ensures level crossings at that particular value of the
coupling.
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The blue curves in Fig. 2 depict E0(β), E2(β) and E4(β), the three lowest lying energy levels pertaining
to antisymmetric bound states generated by the singular perturbation as functions of the coupling parameter. The
yellow horizontal line represents E1 and the green one E3, the energies of the two lowest symmetric bound states.
Quite obviously, the spacing between two consecutive energy levels of Hc

0 , the Hamiltonian of the unperturbed
conic oscillator, is not constant in contrast with what happens for the harmonic oscillator. Nevertheless, the spectral
features are qualitatively identical to those observed in the latter case: all the level crossings take place for the
same value of the coupling parameter which is located to the right of the origin. Identically to what has already
been seen in the case of the harmonic oscillator, the effect produced by this perturbation is far stronger than the
one named after Zeldovich occurring for an attractive δ−interaction.
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FIG. 2. The curves of the three lowest eigenenergies as functions of the coupling parameter β,

and the level crossings occurring at β = βc0 = − Ai(0)

Ai′(0)
u 1.37172. The horizontal lines are the

energy levels of the unperturbed conic oscillator: E1 (yellow) and E3 (green)

3. Level crossings in the discrete spectrum of the three-dimensional isotropic harmonic oscillator
perturbed by a central δ-interaction

It is well known that the three-dimensional negative Laplacian perturbed by the Dirac distribution cannot be
defined by means of the KLMN theorem since such a perturbation is no longer infinitesimally small in the sense
of quadratic forms (see [1, 2]). The same obviously holds in the presence of an harmonic confining potential.

The self-adjoint operator Hβ , representing the Hamiltonian of he three-dimensional isotropic harmonic os-
cillator perturbed by a central δ−interaction, defined either by means of the self-adjoint extension method or
renormalization, has been investigated in depth in [7–10]. The entirely discrete spectrum of the operator, in par-
ticular the lowest lying eigenvalues, has also been studied in detail in those papers. The operator is rigorously
defined by means of the explicit formula for its resolvent, namely:

[Hβ − E]
−1

= [H0 − E]
−1

+
2 |Ψ(E)〉 〈Ψ(E)|

1
β −

1
β0

+ Γ(3/4−E/2)
πΓ(1/4−E/2)

, (9)

with β0 =
πΓ(1/4)

Γ(3/4)
u 9.29495 and:

Ψ(x, y, z;E) =

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

ψ2n1(0)ψ2n2(0)ψ2n3(0)

2n1 + 2n2 + 2n3 + 3
2 − E

ψ2n1(x)ψ2n2(y)ψ2n3(z), (10)

whose norm, for any E < 0, is bounded by:[ ∞∑
n=0

ψ2
2n(0)

(2n+ 1
2 )2/3

]3/2

<∞, (11)
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since the sequence ψ2n(0) behaves like n−1/4 as n→∞.

As is well known, the eigenenergy 2n1 + 2n2 + 2n3 +
3

2
in the discrete spectrum of the three-dimensional

isotropic harmonic oscillator has degeneracy
1

2
(2n1 + 2n2 + 2n3 + 1)(2n1 + 2n2 + 2n3 + 2). Out of all the

eigenstates sharing this energy, only the one having radial symmetry will be affected by the 3D point perturbation

and give rise to a new simple eigenvalue, thus lowering the original degeneracy of the level to
1

2
(2n1 + 2n2 +

2n3 + 1)(2n1 + 2n2 + 2n3 + 2) − 1. This new simple eigenvalue is determined as a function of the coupling
parameter by the equation:

1

β0
− 1

β
=

Γ(3/4− E/2)

πΓ(1/4− E/2)
. (12)

It is worth noting that, apart from the different constant multiplying the ratio of Gamma functions on the right

hand side, the latter equation is of the same type of (3). However, the zeros of the entire function
1

πΓ(1/4− E/2)

are now given by E = 2N +
5

2
, the eigenenergies pertaining to the antisymmetric states, so that for the particular

value β = β0 the degeneracy of the next lower antisymmetric state increases by one. Hence, we get level crossings

occurring for the unique value of the coupling parameter, namely β0 =
πΓ(1/4)

Γ(3/4)
u 9.29495. Therefore, the 3D

point perturbation must be strongly attractive in order to exhibit the level crossing phenomenon.
In Fig. 3, the lowest level crossings between the new eigenvalues created by the point perturbation and the

antisymmetric levels E =
5

2
,

9

2
,

13

2
, clearly unaffected by the singular perturbation, are depicted. Therefore, also

in the three-dimensional case, the effect is stronger than the Zeldovich effect that would occur in the presence of
any short range interaction.
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FIG. 3. The three lowest level crossings between the new eigenvalues created by the point

perturbation and the antisymmetric levels E =
5

2
,

9

2
,

13

2
, clearly unaffected by the singular

perturbation

4. Level crossings in the discrete spectrum of the two-dimensional isotropic harmonic oscillator
perturbed by a central δ-interaction

In perfect analogy with the three-dimensional case, the two-dimensional self-adjoint Hamiltonian Hβ represent-
ing the Hamiltonian of the two-dimensional isotropic harmonic oscillator perturbed by a central δ−interaction, can
be defined by means of the self-adjoint extension theory or by renormalization. Its discrete spectrum, in particular
the lowest lying eigenvalues, has been investigated far less than the three-dimensional analog (see [19, 20]).

As the intermediate steps would be identical to those for the three-dimensional case (see [7]), we omit them
and write the limit as N →∞ in the norm topology of the resolvents, that is to say the counterpart of (4) in [7]:
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(Hβ − E)−1 = (H0 − E)−1 +
|Ψ(E)〉〈Ψ(E)|

1

β
− E

∞∑
n1=0

∞∑
n2=0

ψ2
2n1

(0)ψ2
2n2

(0)

(2n1 + 2n2 + 1)(2n1 + 2n2 + 1− E)

(13)

with:

Ψ(x, y;E) =

∞∑
n1=0

∞∑
n2=0

ψ2n1
(0)ψ2n2

(0)

2n1 + 2n2 + 1− E
ψ2n1(x)ψ2n2(y), (14)

whose norm, for any E < 0, is bounded by:
∞∑
n=0

ψ2
2n(0)

(2n+ 1
2 )

<∞ (15)

since the sequence ψ2n(0) behaves like n−1/4 as n→∞.
Given that the eigenvalues of the operator Hβ are exactly the poles of its resolvent, in order to achieve an

accurate description of the spectrum (obviously being exclusively discrete) of the operator, we need only look for
the solutions of the equation:

1

β
= E

∞∑
n1=0

∞∑
n2=0

ψ2
2n1

(0)ψ2
2n2

(0)

(2n1 + 2n2 + 1)(2n1 + 2n2 + 1− E)
. (16)

The striking difference between the latter equation and its three-dimensional counterpart is that the right hand
side cannot be recast as a ratio of Gamma functions; this can be seen as follows. By exploiting the well-known
integral relationship between the resolvent and the semigroup for any semibounded operator for any E below the
lowest point in the spectrum (see, e.g., [21] page 204), as well as the fact that the integral kernel of the semigroup
of the two-dimensional harmonic oscillator is perfectly separable, we get that the right hand side of the above
equation reads for any E <1:

1

β
=

1

π

∞∫
0

et
(
eEt − 1

)
e2t − 1

dt =
1

π

∞∫
0

e−t
(
eEt − 1

)
1− e−2t

dt =
1

π

1∫
0

ξ−E − 1

1− ξ2
dξ. (17)

It is not difficult to show that the last integral on the right hand side can be recast as a limit of an expression
involving Gamma functions so that the bound state equation becomes:

α =
1

2π
lim
ε→0+

Γ(ε)

[
Γ(1/2− E/2)

Γ(1/2− E/2 + ε)
− Γ(1/2)

Γ(1/2 + ε)

]
. (18)

By exploiting the well-known identity:

Γ(ε)Γ(1− ε) =
π

sin(πε)
,

and the limits:

lim
ε→0+

sin(πε)

ε
= π, lim

ε→0+

Γ(1− ε) = 1,

equation (18) can be transformed into:

α =
1

2π
lim
ε→0+

1

ε

[
Γ(1/2− E/2)

Γ(1/2− E/2 + ε)
− Γ(1/2)

Γ(1/2 + ε)

]
. (19)

The limit on the right hand side exists, which leads to an expression involving the difference of two different
values of the logarithmic derivative of the Gamma function, namely:

1

2π

[
Γ′(1/2)

Γ(1/2)
− Γ′(1/2− E/2)

Γ(1/2− E/2)

]
=

1

2π

[
(ln Γ)′(1/2)− (ln Γ)′(1/2− E/2)

]
. (20)

By noting that:

(ln Γ)′(x) = F (x− 1) = −γ −
∞∑
n=1

(
1

n+ x− 1
− 1

n

)
, (21)

where γ denotes the Euler-Mascheroni constant and F (x − 1) is the Digamma function, the latter expression can
be recast as:

1

2π

[
F (−1/2)− F (−1/2− E/2)

]
=

E

4π

∞∑
n=1

1(
n− 1

2

) (
n− 1+E

2

) . (22)
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Hence, the equation determining the perturbed eigenvalues of our Hamiltonian can be written either in terms of the
difference of two different values of the Digamma function or in terms of a simple series (reducing to a telescoping
one when E is any integer with the exclusion of all odd positive ones):

1

β
=

1

2π

[
F (−1/2)− F (−1/2− E/2)

]
=

E

4π

∞∑
n=0

1(
n+ 1

2

) (
n+ 1−E

2

) . (23)

In particular, for any E given by a positive even number, the total energy of an antisymmetric state, the series
on the right hand side becomes a simple telescoping series so that it is rather straightforward to find the location of
the points where level crossings occur. For the lowest antisymmetric level with E = 2 we find β1 = −π, whereas

for the upper one E = 4 we have β2 = −3

4
π.

Figure 4 depicts the two lowest level crossings between the new eigenvalues of the perturbed Hamiltonian
as functions of the strength of the point interaction and the two lowest antisymmetric levels of the 2D harmonic
oscillator clearly belonging to the spectrum of perturbed Hamiltonian. As anticipated in the introduction, the first
striking difference between Fig. 4 and Fig. 3, its three-dimensional counterpart, is that in the plot of the two-
dimensional model the level crossings take place to the left of the origin, which implies that in two dimensions the
point perturbation need only be weakly repulsive to produce the level crossing. Furthermore, each level crossing
occurs at a different value of the coupling parameter.
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FIG. 4. Plot of the two lowest level crossings between the eigenvalues created by the point
perturbation and the two lowest antisymmetric levels of the harmonic oscillator which also belong
to the spectrum of the perturbed Hamiltonian

5. Final remarks

The spectral phenomenon known as “level crossing of eigenvalues” has been investigated by considering the
entirely discrete spectrum of four different energy operators: the Hamiltonian of the one-dimensional harmonic
oscillator perturbed by a nonlocal δ′-interaction, the Hamiltonian of the one-dimensional conic oscillator perturbed
by the same singular interaction, the Hamiltonian of the two-dimensional harmonic oscillator perturbed by a δ-
interaction and its three-dimensional analog. All the point perturbations considered are highly singular so that the
KLMN theorem used to define the δ-perturbation in one dimension may not be invoked.

Although the level crossings in the one-dimensional models share with the three-dimensional model the
property of occurring for a unique positive value of the coupling parameter (representing an attractive interaction),
their nature is fundamentally different since in one dimension the eigenvalues pertaining to the antisymmetric
bound states created by the singular perturbation cross the unperturbed even energy levels, exactly the opposite of
what happens in three dimensions.

The two-dimensional model exhibits entirely different features; the crossings take place for different negative
values of the coupling parameter so that the singular interaction need only be weakly repulsive to produce the
crossings. From a mathematical point of view, the difference is due to the absence of a ratio of Gamma functions
in the bound state equation and the appearance of a difference of Digamma functions as a consequence of the
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logarithmic divergences of two-dimensional quantum mechanics. Further work to achieve a deeper understanding
of the two-dimensional model is ongoing.
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