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In this paper, we investigate the main algebraic properties of the maximally superintegrable system 
known as “Perlick system type I”. All possible values of the relevant parameters, K and β , are considered. 
In particular, depending on the sign of the parameter K entering in the metrics, the motion will take 
place on compact or non compact Riemannian manifolds. To perform our analysis we follow a classical 
variant of the so called factorization method. Accordingly, we derive the full set of constants of motion 
and construct their Poisson algebra. As it is expected for maximally superintegrable systems, the algebraic 
structure will actually shed light also on the geometric features of the trajectories, that will be depicted 
for different values of the initial data and of the parameters. Especially, the crucial role played by the 
rational parameter β will be seen “in action”.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The Perlick systems type I and II have been studied in a large 
number of papers, where several crucial features have been dis-
covered (see for instance [1–10]). In particular, let us remind that 
in his original paper [1], V. Perlick constructed the most general 
class of three-dimensional spherically symmetric lagrangian sys-
tems complying with the requirements of the celebrated Bertrand’s 
Theorem [11], namely the fact that they possess stable circular or-
bits and all bounded trajectories are closed. Of course he had to 
abandon the Euclidean space framework in favor of more general 
conformally flat manifolds. In this way, he unveiled the deep con-
nection existing between the metrics characterizing the manifold 
and the corresponding integrable potentials. He classified these 
generalized Bertrand systems in two multiparametric families, de-
fined according to their Euclidean limit. Family I is the one yielding 
the Kepler–Coulomb system and Family II is the one leading to 
the radial harmonic oscillator [12–14]. In ref. [3] by means of the 
coalgebra approach the extension to hyperspherically symmetric 
systems in any dimension was performed, and an intrinsic charac-
terization of the two families was proposed. Family I was denoted 
as “intrinsic Kepler–Coulomb” because, up to additive and multi-
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plicative constants (one could say, “up to affine transformations”), 
the pertaining class of potentials were discovered to be just the 
Green’s functions of the corresponding Laplace–Beltrami operators. 
Analogously, the potentials comprised in Family II, again up to 
affine transformations, were identified as the “inverse-squared” of 
those belonging to Family I and these have been called “intrinsic 
oscillator”. In a subsequent paper [4] the same authors gave a rig-
orous proof of the previously obtained results, including that of the 
periodicity of the bounded motions, and provided a closed expres-
sion for the corresponding trajectories. Thus, Perlick’s systems of 
type I and II are the most general classes of “maximally superin-
tegrable” lagrangian (and consequently Hamiltonian) systems with 
(hyper-)spherical symmetry.

To further clarify our previous statements, let us recall that a 
classical Hamiltonian system with n degrees of freedom is said 
to be integrable if there are n functionally independent globally 
defined and single-valued integrals of motion in involution for a 
given Poisson bracket. If there exist k, with 0 < k ≤ n − 1, addi-
tional integrals (they must be functionally independent, but not all 
of them in involution), it is called superintegrable. When k = n − 1, 
the system is maximally superintegrable. In this case, all bounded 
trajectories are closed and the motion is periodic [15–17]. The 
constants of motion of maximally superintegrable systems close 
an algebra and can be used to determine the trajectories in pure 
algebraic way. Kepler–Coulomb and (isotropic) harmonic oscilla-
tor systems are examples of spherically symmetric and maximally 
superintegrable systems in an n dimensional Euclidean space. In 
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dealing here with a maximally superintegrable system such as Per-
lick system of type I, rather than relying on an analytic approach 
as in [4], we will follow an algebraic one, that can be generally 
called “factorization approach” or “factorization method”. Through 
the factorization method the algebra of the integrals of motions 
can be explicitly constructed, and its features will pave the way to 
identifying relevant geometric properties such as the shape of the 
closed orbits. We wish to remark that the factorization method ap-
plies both to classical and quantum systems. The method is quite 
simple in yielding the constants of motion (symmetries) and un-
veiling their underlying algebra [18–25]. We should mention that 
other methods have been successfully applied to find the constants 
of motion of superintegrable systems. One of them is based on the 
Hamilton–Jacobi equation, as it is shown in many references [14,
26,27]. Another interesting way to look for constants of motion is 
the method of coalgebras developed in [28,29]. A systematic alge-
braic method has also been used in other papers [30,31]. In this 
work, we will perform a systematic investigation of the constants 
of motion of the classical superintegrable three dimensional Perlick 
system type I by using the factorization method in order to derive 
the trajectories in a purely algebraic way.

This paper is organized as follows. In section 2, we briefly recall 
the basic definition of the Perlick system of type I which depends 
essentially on two parameters β and K . We will introduce new 
variables more suitable to describe the compact or non compact 
manifolds where this system may be defined. In section 3, we con-
struct the constants of motion by means of an extension of the 
factorization method to classical three dimensional systems (it can 
be applied to higher dimensions too). The trajectories of Perlick I 
system are derived, discussed and depicted, for different values of 
the initial conditions as well as of the relevant parameters of the 
system, i.e., K and β = m/n. Both open and closed trajectories are 
presented. The crucial point of the whole treatment, namely the 
evaluation of the algebra of the constants of motion is also given 
here. Section 4 is devoted to the special case of the motion in the 
plane. The key role played by the requirement that β be a rational 
number becomes extremely clear in this somehow simplified set-
ting. Finally, in section 5, we summarize the new results that we 
have obtained, emphasizing what are in our opinion the most rel-
evant ones. As a closing comment, we will briefly outline the most 
promising developments.

2. The Perlick system type I

The Hamiltonian for the Perlick system type I in spherical coor-
dinates (r, θ, ϕ) is

H̃± = β2(1 + K r2)
p2

r

2
+ L2

2 r2
+ G ± 1

r

√
1 + K r2 , (2.1)

where L is the angular momentum and L2 can be considered as an 
angular Hamiltonian Hθϕ in the variables (θ, ϕ), having the form

L2 = Hθϕ = p2
θ + p2

ϕ

sin2 θ
(2.2)

being K , G real constants and β = m/n a rational number. We can 
also consider p2

ϕ as a free Hamiltonian Hϕ in the variables (ϕ, pϕ), 
defined on the unit circle. The angular variables have the usual 
range: 0 < θ < π and 0 < ϕ < 2π . The radial variable has differ-
ent ranges depending on K . If K ≥ 0, then 0 < r < ∞, while if 
K < 0, r must be restricted to the finite interval 0 < r < 1/

√−K . 
In his paper [1] Perlick considered only the negative sign in front 
of the square root of the potential, that is H̃− , in order to have 
bounded motions. However, we will show that for the case K < 0
both Hamiltonians H̃± should be taken into account in order to 
have a well defined Hamiltonian on a three dimensional sphere. 
The metric associated to this Hamiltonian is [3]

ds2 = dr2

β2 (1 + K r2)
+ r2 (dθ2 + sin2 θ dϕ2) . (2.3)

Another point of view on the Hamiltonians (2.1) is to look at them 
not as defined in a curved space but as position dependent mass 
Hamiltonians in a flat space [32,33].

Since {L2, ̃H±} = 0, L2 is a constant of motion and takes the 
positive values L2 = �2. Here, {·, ·} stands for the Poisson brackets 
(PBs) that for the functions f (r, θ, φ), g(r, θ, ϕ) in spherical coor-
dinates are defined by

{ f , g} = ∂ f

∂r

∂ g

∂ pr
− ∂ f

∂ pr

∂ g

∂r
+ ∂ f

∂θ

∂ g

∂ pθ

− ∂ f

∂ pθ

∂ g

∂θ

+ ∂ f

∂ϕ

∂ g

∂ pϕ
− ∂ f

∂ pϕ

∂ g

∂ϕ
. (2.4)

For the sake of simplicity, we also choose G = 0, so when we re-
place L2 by its constant value �2, we can rewrite the initial Hamil-
tonian (2.1) as an effective Hamiltonian H̃±

r in the variable r:

H̃±
r = β2(1 + K r2)

p2
r

2
+ �2

2 r2
± 1

r

√
1 + K r2 . (2.5)

Since {pϕ, ̃H±} = 0, pϕ is another constant of motion: pϕ = �z =
const . In the same way, after replacing Hϕ by �z in (2.2), we have 
an effective Hamiltonian Hθ in θ :

Hθ = p2
θ + �2

z

sin2 θ
. (2.6)

Notice that Hθ is singular at the angles θ = 0 and θ = π , so the 
trajectories lie between these two values (i.e. the North and South 
poles cannot be reached unless �z = 0). Once fixed the values of 
�, �z , the turning points for θ are given by the solutions of �2 =
�2

z/sin2 θ .
In order to take into account different signs and values of K , 

we will make use of the κ-dependent cosine and sine functions 
defined by

Cκ (u) ≡
⎧⎨⎩ cos

√
κ u κ > 0

1 κ = 0
cosh

√−κ u κ < 0
,

Sκ (u) ≡

⎧⎪⎨⎪⎩
1√
κ

sin
√

κ u κ > 0

u κ = 0
1√−κ

sinh
√−κ u κ < 0

. (2.7)

The κ-tangent is defined by

Tκ (u) ≡ Sκ (u)

Cκ (u)
.

Some relations among these κ-functions are [35,36]:

C2
κ (u) + κS2

κ (u) = 1,
d

du
Cκ (u) = −κSκ (u),

d

du
Sκ (u) = Cκ (u) . (2.8)

Now, let us introduce the parameter κ instead of K and make 
the following change of canonical variables,

K = −κ , r = Sκ (ξ), pr = pξ

Cκ (ξ)
, (2.9)

where the range of ξ is as follows: (a) for κ ≤ 0, 0 < ξ < ∞; 
(b) for κ > 0, we have two natural choices: 0 < ξ < π/(2

√
κ) or 



Ş. Kuru et al. / Physics Letters A 381 (2017) 3355–3363 3357
π/(2
√

κ) < ξ < π/
√

κ). This change of coordinates can be inter-
preted in the following way. The variables (ξ, θ, ϕ) can be consid-
ered as the angular coordinates of the points of a (pseudo) sphere 
in R4. When κ < 0 they parametrize the points of one sheet of 
a three dimensional (3D) hyperboloid; when κ = 0 the coordinates 
(ξ, θ, ϕ) represent the spherical coordinates of the points of R3; fi-
nally, for κ > 0 these variables with 0 < ξ < π/(2

√
κ) parametrize 

the points of one half (the north hemisphere) of a deformed 3D 
sphere, and the values π/(2

√
κ) < ξ < π/

√
κ give the points of 

the south hemisphere. In the case κ < 0, this choice of coordi-
nates is not important since the north and south hemispheres of 
a hyperboloid are not connected and can be taken independently 
without any problem, but in the case κ > 0 this parametrization of 
the points of a sphere is quite relevant.

Next, we introduce a Hamiltonian H in the variables (ξ, θ, ϕ)

defined as follows for any value of κ :

H(ξ, θ,ϕ) = β2
p2

ξ

2
+ L2

2

1

S2
κ (ξ)

− 1

Tκ (ξ)
, (2.10)

and the corresponding effective Hamiltonian Hξ by

Hξ = β2
p2

ξ

2
+ �2

2

1

S2
κ (ξ)

− 1

Tκ (ξ)
= β2

p2
ξ

2
+ V eff(ξ) . (2.11)

We will see the relation of this Hamiltonian with the Perlick 
Hamiltonians H̃± for different values of κ .

• κ ≤ 0. In this case, both variables ξ and r vary in the positive 
semi-line (0, ∞). If we change the variables in (2.1) according 
to (2.9) it is easy to check that

H(ξ, θ,ϕ) = H̃−(r, θ,ϕ) . (2.12)

• κ > 0. Here, there are two complementary intervals for the 
range of variable ξ as mentioned above. If we change the vari-
ables in (2.1) according to (2.9), we get

H(ξ, θ,ϕ) =
{

H̃−(r, θ,ϕ) , 0 < ξ < π
2
√

κ
, 0 < r < 1√

κ
,

H̃+(r, θ,ϕ) , π
2
√

κ
< ξ < π√

κ
, 1√

κ
> r > 0 .

(2.13)

Therefore, in this case we have a unique Hamiltonian H well 
defined for all the points of the sphere 0 < ξ < π/

√
κ , such 

that on the north hemisphere is described by H̃− and on the 
south by H̃+ . When these points are parametrized in terms of 
(r, θ, ϕ) variables, each hemisphere gives rise to the two dis-
tinct Hamiltonians H̃± . This is very important since in general 
the trajectories on the sphere are not restricted to the upper 
or the lower hemispheres, and a full description of all of them 
should be done by means of H .

Henceforth, we will use the following notation. For all the val-
ues of κ we will take the Hamiltonian H(ξ, θ, ϕ) as given in (2.10)
or the effective Hamiltonian Hξ (ξ) in (2.11). The ranges of the vari-
able ξ are taken according to the previous discussion depending on 
the values of κ , in particular for κ > 0 the interval is 0 < ξ < π√

κ
.

3. Constants of motion from factorization properties

In this model, we already have three independent constants of 
motion: H, Hθϕ, Hϕ with constant values given by E, �2, �2

z . Our 
aim is to find additional constants of motion by means of the fac-
torization method in order to show the maximal superintegrability 
of the system. A first pair of constants X± will be obtained from 
the effective Hamiltonians Hξ and Hθ , and a second pair Y ± from 
the next two effective Hamiltonians, Hθ and Hϕ .
3.1. The constants of motion X±

The first set of constants X± are constructed in terms of the 
shift functions of Hξ and the ladder functions of Hθ which are 
obtained as follows [18].

• Shift functions of Hξ

The Hamiltonian (2.11) can be factorized as

Hξ = B+B− + λξ , (3.1)

where

B± = 1√
2

(
∓ i β pξ + �

Tκ (ξ)
− 1

�

)
,

λξ = −1

2

(
1

�2
− κ �2

)
. (3.2)

The shift functions B± are complex conjugate of each other 
and they satisfy the following PBs together with the Hamilto-
nian Hξ

{B−, B+} = i β
�

Sκ
2(ξ)

, {Hξ , B±} = ±i β
�

Sκ
2(ξ)

B± .

(3.3)

The second PB of (3.3) implies that

{H, B±} = ±i β

√
Hθϕ

Sκ
2(ξ)

B± . (3.4)

From the factorization given in (3.1) or the effective potential 
(2.11), we conclude that the energy E of the total Hamiltonian 
Hξ for bounded motions must satisfy the following inequali-
ties depending on κ :

κ < 0 , −√|κ | > E ≥ −1

2

(
1

�2
+ |κ |�2

)
,

κ = 0 , 0 > E ≥ − 1

2�2
,

κ > 0 , ∞ > E ≥ −1

2

(
1

�2
− κ�2

)
.

(3.5)

In Fig. 1, it is shown the effective potential V eff(ξ) given by 
(2.11) together with the conditions on the energy (3.5) for dif-
ferent values of κ . For all these three cases, bounded motions 
have two turning points in the variable ξ given by E = V eff(ξ). 
For E ≥ −√|κ | the trajectory will be unbounded with only one 
turning point for κ ≤ 0.

• Ladder functions of Hθ

In order to find the ladder functions for the angular Hamil-
tonian Hθ , defined by (2.6), first we multiply it by sin2 θ and 
after rearranging, we get

−�2
z = p2

θ sin2 θ − Hθ sin2 θ . (3.6)

Now, we can factorize the right hand side of this equality in 
terms of complex conjugate ladder functions

−�2
z = A+ A− + λθ , (3.7)

where

A± = ∓i sin θ pθ + √
Hθ cos θ , λθ = −Hθ . (3.8)

These ladder functions A± together with the Hamiltonian Hθ

satisfy the following PBs

{A−, A+} = 2 i
√

Hθ , {Hθ , A±} = ±2 i
√

Hθ A± . (3.9)
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Fig. 1. Plot of the effective potential V eff(ξ) for κ = −1 (left), κ = 0 (center) and κ = 1 (right) together with the limiting values of the energy given by the inequalities (3.5)
for � = 0.5. The range of κ for κ ≤ 0 is 0 < ξ < ∞ and for κ > 0 it is 0 < ξ < π/

√
κ .
Therefore, the PB with H is

{H, A±} = ∓i

√
Hθϕ

Sκ
2(ξ)

A± . (3.10)

Notice that the factorization (3.7) implies the following in-
equality:

�2 ≥ �2
z , (3.11)

which is reasonable in view of the physical interpretation of �
(the total angular momentum) and �z (the component of the 
angular momentum in the z-direction).

• Construction of X±
From the PBs (3.4) and (3.10), taking into account that β =
m/n, we obtain the constants of motion X± of the Perlick sys-
tem type I in the following form

{H, X±} = 0 , X± = (A±)m(B∓)n . (3.12)

We can denote the values of these constants as follows,

X± = qx e±i αx , 0 ≤ qx < ∞, −π ≤ αx < π. (3.13)

The absolute value qx is directly obtained from the factoriza-
tion properties of A± and B±:

qx = |X±| =
(
�2 − �2

z

)m/2
(

E + 1

2

(
1

�2
− κ �2

))n/2

. (3.14)

By means of these constants of motion, the relation between 
the variables ξ (or r) and θ along the trajectories can be found 
from (3.13) (and the relative frequencies as we will see later). 
However, when � = �z , this relation breaks, because in this case 
(2.6) and (3.8) entail pθ = 0 and θ = π/2. In other words, if � = �z , 
the motion takes place in the horizontal plane z = 0. This particu-
lar case will be considered in Section 4.

In principle, the constants of motion X± given by (3.12) are not 
polynomial in the momentum functions, since A± and B± depend 
on � which is a square root (see (2.6)). However, if we expand the 
powers m and n in (3.12), then the real and imaginary parts of 
these functions will give rise to polynomial constants of motion in 
the momenta [22].

3.2. The constants of motion Y ±

This new set of constants of motion is derived from the shift 
functions of Hθ and the ladder functions of Hϕ . They are obtained 
in a similar way as the previous set.

• Shift functions of Hθ

The angular Hamiltonian defined by (2.6) is factorized as

Hθ = p2
θ + �2

z
2

= C+C− + λ� , (3.15)

sin θ
where

C± = ∓i pθ + �z cot θ , λ� = �2
z . (3.16)

These factor functions C± together with the Hamiltonian Hθ

satisfy the following PBs

{C−, C+} = 2 i
�z

sin2 θ
, {Hθ , C±} = ±2 i

�z

sin2 θ
C± .

(3.17)

The second PB of (3.17) implies that

{Hθϕ, C±} = ±2 i

√
Hϕ

sin2 θ
C± . (3.18)

• Ladder functions of Hϕ

The Hamiltonian Hϕ = p2
ϕ is factorized as

Hϕ = D+D− , D± = √
Hϕ e∓ i ϕ . (3.19)

These ladder functions D± together with the Hamiltonian Hϕ

satisfy the following PBs

{D−, D+} = 2 i
√

Hϕ, {Hϕ, D±} = ±2 i
√

Hϕ D± . (3.20)

Then, the PB with the Hamiltonian Hθϕ is

{Hθϕ, D±} = ±2 i

√
Hϕ

sin2 θ
D± . (3.21)

• The building of Y ±
The Hamiltonian Hθϕ defined by (2.6), besides Hϕ , has the 
constants of motion Y ± that now can be found with the help 
of the relations (3.18) and (3.21):

{Hθϕ, Y ±} = 0 , Y ± = (C±)(D∓) . (3.22)

The geometric meaning of these constants of motion can be 
appreciated by rewriting them in the form

Y ± = −Lz(Lx ± iL y) , (3.23)

where Lx , L y and Lz are the components of the angular mo-
mentum in the x, y and z direction, respectively:

Lx = − sinϕ pθ − cot θ cosϕ pϕ ,

L y = cosϕ pθ − cot θ sinϕ pϕ , Lz = pϕ . (3.24)

If we denote the values of these constants of motion by

Y ± = qy e±iαy , 0 ≤ qy < ∞, π ≤ αy < π , (3.25)

with

qy = |Y ±| = �z(�
2 − �2

z )
1/2 , (3.26)

while the angle αy coincides with the azimuthal angle of the 
angular momentum vector L = (Lx, L y, Lz). The value of this 
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Fig. 2. Plot of the trajectories of β = 1 for the values E = −1 (left), E = −6 (right), κ = −1, � = 0.25 and �z = 0.1.
constant of motion fixes the relation of the angles θ and ϕ
along a trajectory. For example, for �y = 0, αy = π , the relation 
(3.25) gives the following expression for θ(ϕ) (or ϕ(θ))

cot θ = −�x

�z
cosϕ . (3.27)

However, as mentioned before, this relation also breaks when 
� = �z , since in this case �x = 0 and therefore θ = π/2. Note 
that, from expression (3.23), it is clearly seen that Y ± are poly-
nomial in the momentum variables.
In this subsection, we have arrived at an obvious result: the 
Hamiltonian L2 has the symmetries Lz and Y ± or equivalently 
Lx , L y and Lz . Nevertheless, the basis Lz , Y ± will be the most 
adequate to write the symmetry algebra.

3.3. Trajectories of the Perlick system type I

In summary, once fixed the values of the constants of motion 
E, �, �z , the new constants of motion X± and Y ± determine the 
relation between the coordinates r–θ and θ–ϕ , respectively. In this 
way, one can get all the trajectories of the system. Now, in order 
to characterize each trajectory we will use the properties of the 
ladder and shift functions.

The ladder functions, B± of (3.2), and the shift functions, A±
of (3.8), can be expressed as

B±(ξ, pξ ) =
(

E + 1
2

(
1
�2 − κ �2

))1/2
e±i b(ξ,pξ ) ,

A±(θ, pθ ) = (
�2 − �2

z

)1/2
e±i a(θ,pθ ) ,

(3.28)

where b(ξ, pξ ) and a(θ, pθ ) are real phase functions that depend 
also on the constants of motion E, � and �z . The effective Hamil-
tonian Hξ given in (2.11) depends of the variables (ξ, pξ ). When 
the energy E satisfies the restrictions (3.5) the motion is periodic 
between two turning points. The variables (θ, pθ ) are described by 
the effective Hamiltonian Hθ given in (2.6). For �z 	= 0, the motion 
of these variables will be periodic, the range of θ is determined 
by its corresponding turning points. As a consequence, the func-
tions b(ξ, pξ ) and a(θ, pθ ) will also be periodic. Now, taking into 
account the constants of motion X± as given in (3.13) the phases 
of A± , B± and X± are related as follows

m a(θ, pθ ) − n b(ξ, pξ ) = αx, ξ1 ≤ ξ ≤ ξ2, θ1 ≤ θ ≤ θ2 .

(3.29)

This equation fixes the relation of the variables (ξ, pξ ) and (θ, pθ )

along the motion. Therefore, if we differentiate (3.29) with respect 
to time, we get
m ȧ(θ, pθ ) − n ḃ(ξ, pξ ) = 0. (3.30)

This implies that the frequencies ωξ and ωθ are related by

m ωθ − n ωξ = 0. (3.31)

In the same way, we can write the functions C± and D± in the 
form

C±(θ, pθ ) = (�2 − �2
z )

1/2e±i c(θ,pθ ) ,

D±(ϕ, pϕ) = �z e±i d(ϕ,pϕ) ,

(3.32)

where c(θ, pθ ) and d(ϕ, pϕ) are real phase functions. Due to the 
constants of motion Y ± these variables are related by

c(θ, pθ ) − d(ϕ, pϕ) = αy, θ1 ≤ θ ≤ θ2 , −π ≤ ϕ < π .

(3.33)

As the motion of the (θ, pθ ) variables and the (ϕ, pϕ) is periodic, 
differentiating (3.33) with respect to time, we obtain

ωθ − ωϕ = 0. (3.34)

Hence, the frequencies of the angular variables θ and ϕ are equal 
(except for the case � = �z).

In conclusion, when the energy E satisfies the restrictions (3.5), 
the motion is bounded, and the frequencies of the three variables 
are related by (3.31) and (3.34). This implies that the bounded mo-
tion is periodic and the trajectories are closed. In conclusion, we 
have checked in this case that the Bertrand’s theorem is satisfied.

In Fig. 2 and Fig. 3 some examples of the trajectories for differ-
ent values of the energies E and of the parameter β correspond-
ing to bounded and unbounded motions are shown for the case 
κ = −1. The trajectories of the initial Hamiltonian (2.1) are plot-
ted in a three dimensional space (r sin θ cosϕ, r sin θ sinϕ, r cos θ), 
where (r, ϕ, θ) are the spherical coordinates in R3.

3.4. Algebra of the constants of motion for the Perlick system type I

As we have seen in the previous sections, we have obtained 
seven constants of motion for the three dimensional Perlick sys-
tem: H, Hθϕ, Hϕ, X±, Y ± . Only five of these constants are inde-
pendent, for example we can choose: H, Hθϕ, Hϕ , X+, Y + . There-
fore, the Perlick system type I for a rational β = m/n is a maxi-
mally superintegrable system. It turns out that, all the aforemen-
tioned seven constants are useful to express in a simple form the 
algebraic structure defined in terms of Poisson brackets:
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Fig. 3. Plot of the trajectories of β = 2 (left), β = 3 (right) for the values E = −6, κ = −1, � = 0.25 and �z = 0.1.
{H, ·} = 0 , {Hθϕ, Y ±} = 0 ,

{Hθϕ, X±} = ±2 i m
√

Hθϕ X±, {Hϕ, Y ±} = ∓2 i
√

HϕY ± ,

{Hϕ, X±} = 0 , {Y +, Y −} = 2 i
√

Hϕ

(
Hθϕ − 2Hϕ

)
,

{X+, X−} = i m n (Hθϕ − Hϕ)m (Hξ + 1

2
(

1

Hθϕ
− κ Hθϕ))n−1

× (κ
√

Hθϕ + 1

H3/2
θϕ

) − 2 i m2(Hθϕ − Hϕ)m−1

× (Hξ + 1

2
(

1

Hθϕ
− κ Hθϕ))n

√
Hθϕ,

{X±, Y ±} = ∓ i m√
Hθϕ + √

Hϕ
X±Y ±,

{X±, Y ∓} = ∓ i m√
Hθϕ − √

Hϕ
X±Y ∓ . (3.35)

In this way, we have found the algebra of the constants of motion 
for any two coprime integers m and n and any value of the con-
stant κ . The corresponding polynomial algebras can be found as 
in [22].

The complex constants of motion X± and Y ± allow to get real 
constants: Y R = Re(Y ±), Y I = Im(Y ±), XR = Re(X±), XI = Im(X±), 
which will close a real algebra. Besides, for β = 1, κ = 0, the 
complex constants of motion X± can be expressed in terms of 
the angular momentum L = (Lx, L y, Lz) and Runge–Lenz A =
(Ax, Ay, Az) vectors,

X± = Re(X±) ± i Im(X±) = Az√
2

± i
(L ×A)z√

2�
, (3.36)

where

A = p × L − r̂ . (3.37)

Here, we have used the expressions of r, p, L in spherical coor-
dinates. Notice that in the context of the analysis of the Perlick 
system, a generalization of the Runge–Lenz vector has been pro-
posed in ref. [4]. In the next section we will consider the motion 
in a plane corresponding to special case θ = π/2.

4. Special case of the Perlick system type I

In this section, we will study the motion of the Perlick system 
type I in a plane, in this way we want to simplify the relevant con-
stants of motion and the expression of the trajectories determined 
by such constants.
Let us take θ = π/2; with this election the motion is limited 
to x–y plane and the angular momentum along the z-axis is equal 
to the total angular momentum: L = (0, 0, Lz) (� = �z). The corre-
sponding Hamiltonian in the remaining r, ϕ variables is

H̃± = β2(1 + K r2)
p2

r

2
+ pϕ

2

2 r2
± 1

r

√
1 + K r2 . (4.1)

Now, we have two trivial constants of motion: the total energy E
and �z . Following the same procedure as in Sections 2, 3, with the 
change of the variables (r, pr) by (ξ, pξ ), we get the Hamiltonian

H(ξ, θ,ϕ) = β2
p2

ξ

2
+ pϕ

2

2

1

S2
κ (ξ)

− 1

Tκ (ξ)
, (4.2)

with the same range of the variable ξ as specified in Section 2. In 
this case the effective Hamiltonian Hξ is given by

Hξ = β2
p2

ξ

2
+ �z

2

2

1

S2
κ (ξ)

− 1

Tκ (ξ)
= β2

p2
ξ

2
+ V eff(ξ) . (4.3)

It is easy to find two additional constants of motion Z± for the 
Hamiltonian (4.2):

{H, Z±} = 0 , Z± = (D±)m(B∓)n , (4.4)

where

B± = 1√
2

(
∓ i β pξ + �z

Tκ (ξ)
− 1

�z

)
, D± = √

Hϕ e∓i ϕ ,

(4.5)

and

Hξ = B+B− + λξ , λξ = −1

2

(
1

�2
z

− κ �2
z

)
, (4.6)

Hϕ = p2
ϕ = D+D− . (4.7)

These constants of motion Z± have complex values denoted by

Z± = qz e±i ϕz , (4.8)

where −π ≤ ϕz < π and 0 ≤ qz < ∞. The modulus qz has a value 
determined by the other constants of motion E and �z ,

qz = |Z±| = �m
z

(
E + 1

2

(
1
2

− κ �2
z

))n/2

. (4.9)

�z
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Fig. 4. Plot of the trajectories of β = 1 (left), β = 2 (center), β = 3 (right) for the values E = −8.03 (minimum energy of the potential), E = −6, E = −1, E = 4. For β = 1, 
respectively. Here we have chosen κ = −1, � = 0.25 and �z = 0.1.
The functions B± and D± can be written as

B±(ξ, pξ ) =
(

E + 1

2

(
1

�2
z

− κ �2
z

))1/2

e±i b(ξ,pξ ) ,

D±(ϕ, pϕ) = �z e±i d(ϕ,pϕ) ,

(4.10)

where b(ξ, pξ ) and d(ϕ, pϕ) are the corresponding real phase 
functions. When the energy E satisfies the restriction (3.5), the 
bounded motion of the variables (ξ, pξ ) is periodic. Besides, the 
motion of the variables (ϕ, pϕ) is also periodic, due to the angular 
character of ϕ . Then, substituting in (4.8) we get

m d(ϕ, pϕ) − n b(ξ, pξ ) = ϕz, ξ1 ≤ ξ ≤ ξ2 , −π ≤ ϕ < π .

(4.11)

Hence, after differentiating with respect to the time we obtain the 
relation between the frequencies of the two variables:

m ωϕ − n ωξ = 0 . (4.12)

Let us write the equation of the constant of motion Z± ,

(�z e∓i ϕ)m (∓i
β√

2
pξ + �z√

2

1

Tκ (ξ)
− 1

�z
√

2
)n = qz e±i ϕz . (4.13)

Taking the real and imaginary parts of this equality, we get two 
equations

�z√
2

1

Tκ (ξ)
− 1

�z
√

2
=

(
qz

�m
z

)1/n

cos

(
1

n
ϕz + m

n
ϕ

)
, (4.14)

− β√
2

pξ =
(

qz

�m
z

)1/n

sin

(
1

n
ϕz + m

n
ϕ

)
. (4.15)

From (4.14), we obtain the relation between ξ and ϕ along the 
trajectories [4]:

cos

(
1

n
ϕz + m

n
ϕ

)
=

�2
z

Tκ (ξ)
− 1√

2 E �2
z + 1 − κ �4

z

. (4.16)

Relation (4.16) becomes a well known conic section equation for 
the values κ = 0, β = m/n = 1 and ϕz = 0:

α

ξ
= 1 + ε cosϕ , (4.17)

where ε2 = 2 E �2
z +1 (eccentricity) and α = �2

z (semi-latus rectum) 
[34]. In this case, the problem is reduced to the Kepler–Coulomb 
system in the Euclidean plane. If κ = −1 (κ = 1) and β = 1, 
ϕz = 0, then we get the conic section equation in the hyperboloid 
(sphere) [12]:
κ = −1 , (Hyperbolic)
α

tanh ξ
= 1 +

√
ε2 + α2 cosϕ , (4.18)

κ = 1 , (Spherical)
α

tan ξ
= 1 +

√
ε2 − α2 cosϕ . (4.19)

So, we may say that the equation (4.16) can be considered as a 
generalized conic section equation. Taking into account the rela-
tion (4.18) for κ = −1 and the relation (4.19) for κ = 1 different 
examples of trajectories (ξ cosϕ, ξ sinϕ), where (ξ, ϕ) are polar 
coordinates, are plotted in Figs. 4–7. In these figures there are 
represented bounded and unbounded trajectories, according to the 
values of the energy E . In the case of bounded motion, due to the 
above relation of the frequencies (4.12) the motion must be peri-
odic and the trajectories are closed.

In the special case where κ = 0 and β = m/n = 1, the constants 
of motion Z± can also be expressed in terms of the Runge–Lenz 
vector A= (Ax, Ay, 0),

Z± = Re(Z±) ± i Im(Z±) = Ax√
2

∓ i
Ay√

2
. (4.20)

For the other cases (κ = ±1), the constants of motion Z± can be 
written in terms of a type of generalized Runge–Lenz vector [4]. 
Note that, the constants H, Hϕ, Z± close a similar algebra as in 
the general case.

5. Conclusions and remarks

In this paper, we have started an algebraic approach to the 
study of Perlick’s systems, the family of maximally superintegrable 
systems discovered in 1992, that represent the most general ex-
tension of the classical Bertrand systems to curved (though con-
formally flat) N-dimensional (Riemannian) manifolds. We would 
summarize our main new findings as follows. On one hand, we 
have given a thorough description of the algebraic and geometrical 
properties of the classical Perlick system of type I by means of the 
factorization approach: we have identified both the shift and the 
ladder functions for the radial as well as for the angular Hamil-
tonian. Henceforth, we have been able to identify the full set of 
constants of motion and their related Poisson algebra, and unveiled 
the intimate connection with the geometric features of the orbits 
provided by superintegrability. On the other hand, we have been 
able to single out the role played by the two parameters that char-
acterize the system: the real parameter K , entering both in the 
metrics and in the potential, is related with the compact or non-
compact nature of the manifold where the motion takes place; the 
rational parameter β , which does not appear in the potential, is in 
turn responsible for what we would call “the complexity” of the 
trajectories, namely their winding number. These features emerge 
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Fig. 5. Plot of the trajectories of β = 1/2 (left), β = 1/3 (right) for the values E = −8.03 (minimum energy of the potential), E = −6, E = −1, E = 4, corresponding to circular, 
elliptic, parabolic and hyperbolic orbits, respectively. Here we have chosen κ = −1, � = 0.25 and �z = 0.1.

Fig. 6. Plot of the trajectories of β = 1 (left), β = 2 (center), β = 3 (right) for the values E = −7.96875 (minimum energy of the potential), E = −3, E = 0, E = 1. Here we 
have chosen κ = 1, �z = 0.25.

Fig. 7. Plot of the trajectories of β = 1/2 (left), β = 1/3 (right) for the values E = −7.96875 (minimum energy of the potential), E = −3, E = 0, E = 1. Here we have chosen 
κ = 1, �z = 0.25.
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in a perspicuous manner from the graphic representations of the 
(effective) potential as well as of the orbits, reported in a number 
of figures for different values of K and β .

The further steps to be accomplished are clear. (i) We have to 
see how our construction goes over to the quantum setting, and 
(ii) we have to perform a similar construction for the full Per-
lick family II. Work is actually in progress in both directions, and 
promising preliminary results have been already obtained by the 
authors and their collaborators.
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