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Abstract The analysis of the atomic spectra emitted by highly ionized atoms is
a field of extraordinary richness and a part of atomic physics with applications in
astrophysics, engineering, fusion plasma and materials research. Certain elements
have attracted considerable attention because they are useful for spectroscopic diag-
nostics in fusion plasmas, where a prediction of the experimental spectra is required.
Taking into account this fact, the Relativistic Quantum Defect Orbital method has
been applied to calculate relevant atomic data, as transition rates for emission lines,
in a high number of atoms and ions. This formalism, unlike sophisticated and costly
self-consistent-field procedures, is a simple but reliable analytical method based on
exactly solvable model potentials, a type of problems that always attracted Prof.
March attention. The method has the great advantage of a low computational cost,
which is not increased as the atomic system becomes heavier. In this work, a high-
light of this method is presented, together with an overview of the main atomic data
obtained using it, which are useful in engineering for fusion plasma diagnostic.

1 Introduction

Present-day magnetic fusion devices, especially tokamaks, can generate plasmas
with electron temperatures near 10 keV, and future machines may even reach tem-
peratures of 25 keV or more. This means that they can produce ions with very high
charge even from heavy elements. From the beginning, highly charged ions have
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been an important component of magnetically confined plasmas, and their presence
has been highly advantageous for both plasma diagnostics and basic atomic physics
studies, and harmful for the operation of a given device, if present in large quanti-
ties. The good and bad properties of highly charged ions derive from the fact that
they radiate when embedded in a sea of electrons. Partially ionized heavy elements
radiate profusely, mostly in the extreme ultraviolet wavelength range, while ions
stripped to a few electrons within a closed shell, radiate predominantly in the X-
ray range. This radiation can be used to diagnose the plasma conditions, such as
the electron temperature, electron density, ion temperature, ion transport and diffu-
sion, and bulk plasma motion. On the other hand, the radiation from highly charged
ions contributes to the overall power loss of the plasma: if the plasma contains too
many heavy ions, the associated radiative power loss can be severe and prevent ig-
nition and burn. The studies of plasma physics are also among the wide range of
research interests of Prof. N.H. March, as can be seen in the following references
[1, 2, 3, 4, 5, 6, 7, 8, 9].

Highly charged ions play a crucial role in magnetic fusion plasmas given that
they are used for many diagnostic purposes in magnetic fusion research [10]. These
plasmas are excellent sources for producing highly charged ions and plenty of radia-
tion for learning their atomic properties. These studies include calibration of density
diagnostics, X-ray production by charge exchange, line identifications and accurate
wavelength measurements, and benchmark data for ionization balance calculations.
Studies of magnetic fusion plasmas also consume a large amount of atomic data, es-
pecially in order to develop new spectral diagnostics. In this way, line identification
has been a diagnostic necessity in fusion research in order to identify the impuri-
ties that are inadvertently released into the plasma as different heating scenarios are
explored. Early work focused on the transition metals, such as titanium, chromium,
iron, and nickel, as well as on noble gases that could be admixed to the plasma.
Once the possibility was created to inject any type of material into the plasma via
laser injection, spectra of other metals were also investigated [11].

However, it is now clear that under conditions which prevail in low-density labo-
ratory tokamak plasmas (where collisional deexcitation of metastable states is rather
slow, leading to buildup of population of metastable levels), forbidden transitions,
i.e., electric quadrupole and magnetic dipole transitions, gain in intensity and can be
used to infer information about plasma temperature and dynamics. Forbidden lines
due to magnetic dipole and electric quadrupole transitions between fine-structure
levels of the ground and lower lying excited configurations of highly ionised atoms
have been used for diagnostic of laboratory plasmas related to fusion devices. For
those lines, fusion specialists need accurate atomic data, such as radiative transition
probabilities. To respond to this need, atomic physicists have put a great deal of
effort to computing (and sometimes measure) the required data.

To carry out those calculations, a number of ab initio codes are available, some of
them have proved to yield rather accurate transition probability data. However, most
of them are highly time-consuming and often infested with convergence problems.
As an alternative, semiempirical methods are widely recognized that, for this type of
studies, is of a clear convenience given that combine reliability and simplicity. Most
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of the semiempirical methods currently employed, which are quite often derived
from a modification of a hydrogenlike wave equantion, the various interactions are
given a different weighting. Deviations from the Coulomb potential, often classified
as “penetration” and “polarization” (depending on the degree of overlap between
the active and passive electrons, in the context of electronic transitions) may, at
least to a reasonable extent, be accounted for by a model Hamiltonian that contains
a parameter related to the quantum defect. More specifically, the two above effects
seem to be adequately described in the relativistic quantum defect orbital (RQDO)
method [12, 13], which has been reformulated for the calculation of atomic data for
forbidden transitions [14].

The paper is organized as follows. In the next section we will give a brief
overview of the main aspects of the RQDO method, followed by the extension of
this formalism to E2 transitions in Section 3. In Section 4, we illustrate how the use
of the systematic trend of the atomic data along an isoelectronic sequence allows
to predict data for new ions and to analyse the influence of the relativistic effect
for highly ionized atoms. Section 5 is dedicated to show the calculated spectra of
some of the ions with most interest for plasma diagnostic in fusion devices. Some
concluding remarks put the end to the paper.

2 The Relativistic Quantum Defect Orbital Method

The relativistic formulation of the quantum defect orbital formalism, as proposed by
Karwowski and Martı́n [12, 13] was based on the decoupling of the Dirac second-
order equation, and the interpretation of the resulting solutions, that, unlike previ-
ous models based on the quantum defect, provides exact eigenfunctions of a model
Hamiltonian. The resulting orbitals are also valid in the core region retaining ap-
proximate core-valence orthogonality.

For a Coulomb potential V (r) = −Z/r, after the elimination of the spin and an-
gular variables, the relevant radial part of the Dirac equation reads as follows in
atomic units (used throughout the whole paper)[

− d2

dr2 +
s(s±1)

r2 − 2Z(1+α2E)
r

]
φk
± = E(2+α

2E)φk
±, (1)

where φk
+ and φk

− are related to the small and large components of the Dirac wave
functions, E is the difference between the total and the rest energy of the electron, k
is the relativistic angular momentum quantum number

k =±( j+1/2), where j = `±1/2, (2)

with ` the orbital quantum number, α is the fine structure constant, and

s = k

√
1− α2 Z2

k2 . (3)
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Two interpretations may be given to the solutions of Eq. (1): first, they give us
the two components of the relativistic wave function wich is solution of the cor-
responding Dirac equation; second, they give us two solutions (corresponding to k
and −k) of a single scalar equation for a scalar (quasirelativistic) wave function ψk.
A quasirelativistic theory is not only considerably simpler than the relativistic one,
but, most important, it closely resembles the Schrödinger formulation. As a con-
sequence, one may rather easily implement the quasirelativistic formalism in the
majority of the methods being developed for the nonrelativistic theory. Equation (1)
is formally very similar to the radial hydrogenic equation and passes into it in a
trivial manner in the nonrelativistic limit of α → 0.

The quantum defect orbitals (QDO) are solutions of the Schrödinger equation[
− d2

dr2 +
χ(χ +1)

r2 − 2Znet

r

]
ψk

QD = 2EQD
ψk

QD, (4)

where Znet is the nuclear charge on the active electron at large r and

χ = `−δ + c, (5)

being δ the so-called quantum defect, and c an integer chosen to ensure the correct
number of nodes and the normalization of the radial wave function. The eigenvalue
EQD in Eq. (4) depends only on the noninteger part of χ , being independent on c.
The quantum defect δ is empirically obtained from the following expression:

EQD = Ex =− Z2
net

2(n−δ )2 , (6)

where Ex is the experimental energy and n is the principal quantum number of
the nonrelativistic theory. A straightforward observation of Eqs. (1) and (4) clearly
prove that the formal mathematical structures of the QDO theory and the scalar rela-
tivistic theory are the same. This formal similarity [12, 13] allowed us to reinterpret
the QDO theory so that it would account for the major part of the relativistic effects.

Analogously to the nonrelativistic case shown in Eq. (4), the relativistic quantum
defect orbital (RQDO) equation is written as follows[

− d2

dr2 +
Λ(Λ +1)

r2 − 2Z′net

r

]
ψk

RD = 2eRD
ψk

RD, (7)

where Z′net depends on quantities already defined

Z′net = Znet(1+α
2Ex), (8)

and the parameter Λ is such that

Λ =

{
s−1−δ ′+ c when j = `+1/2,

−s−δ ′+ c when j = `−1/2.
(9)
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We have just introduced the so-called relativistic quantum defect δ ′, a key element
of the present method, which will be determined empirically from the experimental
energy Ex using the expression [13]

− Z2
net

2(η−δ ′)2 = Ex 1+α2Ex/2
(1+α2Ex)2 . (10)

In the last equation the parameter η is defined as

η = n−|k|+ |s|, (11)

in terms of quantities already introduced.
It should be stressed that this formulation is “exact” in the sense that it is equiv-

alent to a four-component formulation based on the standard first-order form of the
Dirac equation. All matrix elements, in particular the transition moments, may be
expressed in a simple way, using the solutions of the second-order equation. A set
of recurrent formulas which are fulfilled by the radial integrals [15] makes the for-
malism to be very simple and compact. Karwowski and Martı́n [12] have remarked
that the relativistic density distribution approximates very well the exact one at large
values of r. At small distances, the quality of the density deteriorates, as happens
when the nonrelativistic QDO densities are compared with the exact nonrelativistic
ones. Fortunately, the consequences of this drawback are very seldom reflected in
the quality of the QDO and RQDO transition probabilities, because the strongest
contribution to radial matrix elements comes, in most cases, from large radial dis-
tances.

The most important difference between the RQDO and QDO equations is the
explicit dependence of the former on the total angular momentum quantum num-
ber k. As a consequence, values of the relativistic quantum defect are determined
from the fine structure energies rather than from their centers of gravity. The corre-
sponding relativistic quantum defect orbitals are different for each component of a
multiplet and, if c = 0, they retain the nodal structure of the large components of the
hydrogenic Dirac wave function.

3 Extension of RQDO method to E2 transitions

Let us consider now electric multipole radiation. The operator responsible for this
radiation is the electric 2ξ -pole moment, introduced by the general expression

Q(ξ ) = e∑rξ

k

(
4π

2ξ +1

)1/2

Y µ

ξ
. (12)

Using the Racah tensor Cξ
m, we have

Q(ξ ) = e∑rξ

k C(ξ )
m . (13)
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In the particular case ξ = 2 the transitions take place via electric quadrupole
mechanism, E2. In this context, the electric quadrupole line strength for a transition
between two states within the LSJ-coupling (which is the coupling scheme followed
throughout this work) in the notation of the classical book by Condon and Shortley
[16] is given by the equation

S(2)nl j,n′l′ j′ =
2
3
|〈αJ ‖ Q(2) ‖ α

′J′〉|2, (14)

where the matrix-elements have the form

〈αJ ‖Q(2) ‖α
′J′〉=

√
(2J+1)(2J′+1)W (SJL′2;LJ′)〈αL ‖Q(2) ‖α

′L′〉δSS′ (15)

where the Kronecker delta δSS′ appears because the electric n-pole operators do
not depend on spin, and W (SJL′2;LJ′) are the Racah W-coefficients, which can be
described in terms of Wigner’s 6-j symbols as

W (SJL′2;LJ′) = (−1)S+J+L′
{

S J L
2 L′ J′

}
. (16)

Now, we define a line factor Rline by

Rline(SLJ,S′L′J′) = (2J+1)1/2 (2J′+1)1/2 W (SJL′2;LJ′), (17)

and the line strength then becomes

S(2)nl j,n′l′ j′ =
2
3
(2J+1)(2J′+1)

(
W (SJL′2;LJ′)

)2
∣∣∣〈αL ‖ Q(2) ‖ α

′L′〉
∣∣∣2 δSS′

=
2
3
(
Rline(SLJ,S′L′J′)

)2
∣∣∣〈αL ‖ Q(2) ‖ α

′L′〉
∣∣∣2 δSS′ . (18)

It is important to stress that spin does not change during the transition because, as
it was already mentioned, the relevant operator is spin-independent. The following
selection rules apply to E2 transitions between LS-coupling states: ∆S = 0 and also
∆L = +2,+1,0,−1,−2. But they do not apply neither from L = 0 to L = 0, nor
from L = 1 to L = 0.

Therefore, the reduced matrix element 〈αL ‖ Q(2) ‖ α ′L′〉 provides the relative
strength of different multiplets. We can write this reduced matrix element as the
product of a single-electron reduced matrix element 〈nL ‖ Q(2) ‖ n′L′〉, which de-
pends only on the quantum numbers of the jumping electron, and a factor Rmult , that
we shall call the multiplet factor, as follows:

〈αL ‖ Q(2) ‖ α
′L′〉 = Rmult(αL,α ′L) 〈nL ‖ Q(2) ‖ n′L′〉, (19)

where
〈nL ‖ Q(2) ‖ n′L′〉 = 〈L ‖C(2) ‖ L′〉 〈Rnl j|Q(2)|Rn′l′ j′〉. (20)
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In the last equation 〈Rnl j|Q(2)|Rn′l′ j′〉 is the transition integral, 〈L ‖C(2) ‖ L′〉 is the
pertinent reduced matrix element, which can be evaluated using 3-j symbols. The
multiplet factor Rmult may be expressed as follows:

Rmult(αL,α ′L′) = (2L+1)1/2 (2L′+1)1/2 W (LcLl′2; lL′), (21)

the last symbol in Eq. (21) being the Racah W-coefficient

W (LcLl′2; lL′) = (−1)Lc+L+l′
{

Lc L l
2 l′ L′

}
. (22)

Finally, the line strength (18) takes the form (for S = S′):

S(2)nl j,n′l′ j′ =
2
3

∣∣∣Rline(SLJ,S′L′J′) Rmult(αL,α ′L′) 〈L||C(2)||L′〉 〈Rnl j|Q(2)|Rn′l′ j′〉
∣∣∣2 .

The total line strength for a transition between multiplets is equal to the sum of the
line strengths of all the multiplet lines:

S(γL,γ ′L′) = ∑S(γJ,γ ′J′). (23)

Thus, the line strength for a multiplet transition is

S(γL,γ ′L′) = (2S+1)
∣∣∣〈αL ‖ Q(2) ‖ α

′L′〉
∣∣∣2

= (2S+1)
∣∣∣Rmult(αL,α ′L′)〈nL ‖ Q(2) ‖ n′L′〉

∣∣∣2 . (24)

The relationships between the line strength S(2) (in atomic units, e2a4
o), the os-

cillator strength f (2) (dimensionless), and the transition probability A(2) (in s−1) for
E2 transitions are given by [17]

g′A(2) = (8π
2h̄α/mλ

2)g f (2) = (6.6703 1015/λ
2)g f (2), (25)

g′A(2) = (32π
5
αca4

o/15λ
5) S(2) = (1.11995 1018/λ

5) S(2), (26)

where λ is the transition wavelength (in Å), g and g′ are the degeneracies of the
lower and upper state, respectively, and α is the fine-structure constant.

4 The Z-expansion theory for E2 transitions

Regularities in individual oscillator strengths along an isoelectronic sequence as
functions of the nuclear charge have been predicted from conventional perturbation
theory [18, 19], but these results can be extended to E2 transitions. Let us denote
the transition integral

|〈Rnl j|rξ |Rn′l′ j′〉|= I(ξ )nl j,n′l′ j′ . (27)
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Then, for a given operator, the variation of a matrix element as a function of Z
may be studied by the Rayleigh-Schrödinger perturbation theory: if we introduce
ρ = Z r and ε = EZ−2 (in atomic units), the expansions of ψ and E in powers of the
perturbation parameter Z−1 are the following:

ψnl j,n′l′ j′ = ψ0 +ψ1 Z−1 +ψ2 Z−2 + · · · (28)

E = Z2(ε0 + ε1 Z−1 + ε2 Z−2 + · · ·). (29)

In particular, the dipole transition integral (ξ = 1) is given by the Z-expansion

|〈ψnl j|ρ|ψn′l′ j′〉|= I(1)nl j,n′l′ j′ = I(1)0 Z−1 + I(1)1 Z−2 + · · · , (30)

where I0 is the corresponding integral for hydrogen and the superscript (1) refers in
all the cases to E1 or electric dipole transitions.

The dipole line strength, or squared radial integral Eq. (30), may be written as:

S(1)nl j,n′l′ j′ = S(1)0 Z−2 +S(1)1 Z−3 +S(1)2 Z−4 + · · · , (31)

and the expression for the E1 oscillator strength will be

f (1)nl j,n′l′ j′ = f (1)0 + f (1)1 Z−1 + f (1)2 Z−2 + · · · . (32)

For the line and oscillator strength, as well as for the transition probability A,
it is possible to perform a paralell nuclear charge expansion representation in the
quadrupole case to study systematic trends of E2 S or f -values along an isoelec-
tronic sequence. Here, the transition operator (ρ2) leads to [20]

S(2)nl j,n′l′ j′ = S(2)0 Z−4 +S(2)1 Z−5 +S(2)2 Z−6 + · · · (33)

with
S(2)0 =

∣∣〈ψnl j|ρ2|ψn′l′ j′〉
∣∣2 . (34)

For the transition probability A, the corresponding expansion is the following,

A(2)
n′l′ j′,nl j = A(2)

0 Z6 +A(2)
1 Z5 +A(2)

2 Z4 +A(2)
3 Z3 +A(2)

4 Z2 + · · · , (35)

and the quadrupole oscillator strength may be written as

f (2)nl j,n′l′ j′ = f (2)0 Z2 + f (2)1 Z + f (2)2 + f (2)3 Z−1 + f (2)4 Z−2 + · · · , (36)

where f (2)0 , f (2)1 , f (2)2 , ... are proportional to some power of ∆ε0, the hydrogenic tran-
sition energy corresponding to the transition under study. It is also very interesting
to analyze the behaviour of f (2) Z−2 along the isoelectronic sequence. From Eq. (36)
it follows that

f (2)nl j,n′l′ j′ Z
−2 = f (2)0 + f (2)1 Z−1 + f (2)2 Z−2 + · · · (37)
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When no change of the principal quantum number occurs during the transition, that
is4n = 0, and if we ignore relativistic effects,4ε0 = 0, we have

f (2)l j,l′ j′ = f (2)3 Z−1 + f (2)4 Z−2 + · · · . (38)

In other words, the curve of f (2) versus Z−1 would tend to an asymptotic zero value
in the high-Z side of the sequence. Eq. (38) is expected to be a good approximation
to the behaviour of the oscillator strength with Z−1 for E2 transitions at least for the
first few ions of the sequence of a light element, e.g., Na I, where relativistic effects
still are not very important. However, as soon as these effects set in, deviations from
Eq. (38), as well as from all the expressions in this section, are expected to occur.

In this way, the dependence of the relativistic effects with the nuclear charge Z
in E2 transitions can be analysed by the calculation of the contribution of the rel-
ativistic effects (RE) in intra-configuration transitions, which can be done by com-
paring the results from the calculations performed with the non-relativistic (QDO)
and the relativistic (RQDO) formulations of the Quantum Defect Orbital method.
The weighting of the relativistic effects on the oscillator strengths can be measured
in the following manner:

RE =

[
fQDO− fRQDO

fQDO

]
·100. (39)

Relativistic effects lead to a decrease in the magnitude of the oscillator strengths
of the ions under study, that is, fRQDO is generally found to be smaller than fQDO
for a given E2 transition. We have analysed this effect for the electric quadrupole
transitions in the Na sequence as a function of the nuclear charge Z, and fitted the
RE-value individually for each of the fine-structure transitions to a polynomic func-
tion of Z. The fitting formulae obtained for the nl j→ nl j′ E2-lines has the following
general expression

REnl j→nl j′ = a+bZ + cZ2. (40)

These equations can be found in the paper of Charro et al for Na-like ions [21], and
are plotted in Figure 1. It is apparent that the influence of the relativistic effects in
the oscillator strengths for all the fine-structure transitions decreases as n increases.
It is also found that the relativistic effects appear to be generally less important as
` increases for a given n. These two features were to be expected, in the presently
analysed range of ions, where the largest atomic number is Z = 36. Hence, the
dominant relativistic effects are those of direct character, which are appropriately
included in the RQDO procedure.
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Fig. 1 Contribution of the
relativistic effects in intracon-
figurational fine-structure E2
transitions of Na-like ions.

5 Atomic data and UV and X-ray atomic spectra for ions in
fusion plasma

Given that the regular behaviour of atomic data as oscillator strengths along iso-
electronic sequences has proven to be a useful tool for analysing a large body of f -
values, the analysis of the systematic trend of the A-values for E2 transitions along
isoelectronic sequences was carried out in several previous works using the RQDO
method, both for allowed and forbidden transitions. This study may also be ex-
ploited to obtain additional oscillator strengths by simple interpolation techniques.
From the analysis of systematic trends for E2 transitions, several calculations have
been performed, in particular the following isoelectronic sequences:

• B–sequence: Z = 37 - 82 (see Ref. [22]).
• K–sequence Z = 25 to Z = 80 (see Ref. [23]).
• Al–sequence (see Ref. [24]).
• Ga–sequence (see Ref. [25]).
• Na–sequence. E2 transitions (see Refs. [21, 26]).

As an example, the behaviour of E2 transition probabilities along the boron iso-
electronic sequence is graphically analysed in Figure 2. The value of logA has been
plotted against the atomic number Z. The available comparative data have also been
included [27, 28]. This figure is useful for two purposes: the first one is to show
the agreement or deviations among the different sets of data, the second one is to
reflect the systematic trends obeyed by the individual RQDO A-values along the
isoelectronic sequence, which have long been considered as a qualitative proof of
correctness, and can be used for the interpolation or extrapolation of non-calculated
data. Inspection of Figure 2 reveals a rather good general agreeement between our
results and the comparative data.

The interest in line emission from highly-ionised atoms in tokamak devices is, in
the first instance, due to the effect of impurities on the overall performance of the
tokamak as a fusion device. The most common impurity elements are Ti, Cr, Fe, Ni,
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Fig. 2 Transition Probabili-
ties for E2 forbidden lines in
boron isoelectronic sequence,
being the comparative data
reported by Froese Fischer
[27] for (b) and (c), and by
Cheng et al [28] for (d).

the lighter C, N, O, and the rare gases Ne and Ar [29]. Allowed transitions in ions
of metals as Zr have been reported using RQDO method [30], but also interesting
in tokamaks are the forbidden lines, which are valuable diagnostic monitors of the
ion motion, and of the metal impurity concentrations. For E2 transitions several cal-
culations using this semiempirical method have been performed in order to predict
the UV and X-ray spectra for several metals, in particular highly-charged ions as is
the case of Ti XII and FeXVI (Figures 3 and 4). We have done a simulation of the
E2 spectrum of these two ions, which include only the intensities of the RQDO E2
transitions [31].

Fig. 3 The simulated spectra
for Ti XII according to RQDO
calculations for forbidden
(E2) transitions.
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Fig. 4 The simulated spectra
for Fe XVI according to
RQDO calculations.

6 Concluding remarks

The RQDO formalism, as opposed to sophisticated and costly self-consistent-field
procedures, is a simple but reliable analytical method based on a model Hamilto-
nian. It has the great advantage of the computational effort not being increased as
the atomic system dealt with becomes heavier and is capable of achieving a good
balance between computational effort and accuracy of results. The method is a use-
ful tool for calculating UV and X-ray atomic spectra for ions and transitions which
are difficult to evaluate, and may play an important role in the future, when fusion
becomes a reality.
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