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Abstract

It is shown that the action of the bosonic sector of D = 11 supergravity may be obtained by means of 
a suitable scaling of the originally dimensionless fields of a generalized Chern–Simons action. This fol-
lows from the eleven-form CS-potential of the most general linear combination of closed, gauge invariant 
twelve-forms involving the sp(32)-valued two-form curvatures supplemented by a three-form field. In this 
construction, the role of the skewsymmetric four-index auxiliary function needed for the first order formu-
lation of D = 11 supergravity is played by the gauge field associated with the five Lorentz indices generator 
of the bosonic sp(32) subalgebra of osp(1|32).
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is known [1–4] that various D = 3 (super)gravities are actually Chern–Simons (CS) theories 
based on Lie superalgebras. Although supergravities in D > 3, D odd, do not have a true CS 
nature, it has been argued that certain CS theories may be related to supergravities for odd D > 3
dimensions. These CS theories have been generically called ‘CS supergravities’ [5–7] (see [8]
for further references).
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CS actions are constructed (see e.g. [9]) as follows. Let Ai , F i (i = 1, . . . , dimG) be the 
Maurer–Cartan (MC) gauge fields and curvatures associated with a Lie algebra G in a certain 
basis. Then, the 2�-form (the exterior product symbol ∧ will be omitted throughout)

H = ki1...1�
F i1 . . . F i� , (1.1)

where ki1...1�
are the coordinates of a symmetric invariant tensor of order �, is closed and gauge 

invariant. Since a gauge free differential algebra is contractible, H is also exact, H = dB , and 
the potential B defines a Chern–Simons (2� −1)-form, which is gauge invariant up to an exterior 
differential. Then, the CS action is given by the integral

ICS =
∫

M2�−1

B (1.2)

over a (2� − 1)-dimensional manifold M2�−1; it is gauge invariant up to non-trivial topological 
situations ignored in this paper.

The possible connection between CS supergravity and the actual supergravities for D > 3
suggested in refs. [10–13] (see [14] for another connection in D = 11 based on the comparison of 
the linearized models) is best analyzed by expressing the gauge fields and curvatures associated 
with the superalgebra G in terms of supermatrices A and F, with one- and two-form fields entries 
respectively. This is the case for D = 3 and G = osp(p|2) ⊕ osp(q|2), for D = 5 and G =
su(1|2, 2) and for D = 11 and G = osp(1|32) (or osp(1|32) ⊕ osp(1|32)). H is typically of the 
form H = Tr(F�) where Tr denotes the supertrace, although other non-primitive, closed gauge 
invariant forms will be considered below. Depending on the case, the MC one-form gauge fields 
of the superalgebras may, or may not, correspond to the fields of D-dimensional supergravities. In 
the second and almost general case, the association between ‘CS supergravities’ and the standard 
supergravities in D dimensions fails. Let us show this by summarizing the D = 3, 5 and 11 cases.

We use mostly plus metric throughout.

1.1. The D = 3 case

Let us first consider the simplest algebra G = osp(1|2) ⊕ sp(2) (i.e. p = 1, q = 0 above). The 
osp(1|2) and sp(2) gauge fields, denoted A and ̃A respectively, can be written in matrix form as

A=
(

f ξ

ξ̄ 0

)
, f = faγ

a ; Ã= f̃ , f̃ = f̃aγ
a , (1.3)

where ξ is a two-component Grassmann odd Majorana spinor form and γ a are the 2 × 2 D = 2
gamma matrices. Note that osp(1|2) alone would not provide enough fields for D = 3 super-
gravity and that all fields fa , ξ and f̃a in (1.3) are necessarily dimensionless; to define ‘physical’ 
one-form fields, we introduce a scale parameter λ, [λ] = L−1. We use geometrized units for 
which c = 1 = G, so that all the quantities have physical dimensions in terms of powers of 
length; with them, the dimensions of an action in D-dimensional spacetime is L(D−2). The new 
fields ωa , ea , and ψ obtained from f , ξ and f̃ are then defined by

fa = ωa + λea , f̃a = ωa , ξ = λ
1
2 ψ , (1.4)

so that they have the right dimensions [ωa] = L0, [ea] = L1 and [ψ] = L
1
2 to be identified with 

the fields of D = 3, N = 1 supergravity in the first order formulation.
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The action is constructed starting from the closed, invariant polynomial four-form

H(f, f̃ , ξ ;α) = Tr(F2) + αTr(̃F2) , (1.5)

where α is a dimensionless constant and

F = dA+A
2 =

(
df + f 2 + ξ ξ̄ dξ + f ξ

dξ̄ + ξ̄f 0

)
, F̃ = df̃ + f̃ 2 . (1.6)

Inserting (1.4) into (1.5) and collecting the terms in equal powers of λ gives

H(ω, e,ψ;λ,α) = H0 + λH1 + λ2H2 + λ3H3 , (1.7)

where H0 = H0(ω, α) only since H(ω, e, ψ; λ, α) is dimensionless and H1,2,3 �= H1,2,3(α). We 
note in passing that this re-scaling in λ is the starting point of the (super)Lie algebra expansions 
procedure, introduced in [15] and considered in general in [16], by which new (super)algebras 
may be obtained from a given one. Note that, unlike in the contraction of algebras, where the 
dimensions of the original algebra and that of the contracted one are necessarily equal, the di-
mension of the expanded algebra is usually higher since the expansion process is not dimension-
preserving in general1 (see [16,17] for details).

By construction, the above two-form H and the associated CS action are osp(1|2) ⊕ sp(2)

gauge-invariant. In particular, the local supersymmetry transformations under the odd dimension-

less gauge parameter η that corresponds to the gauge field ξ are, written in terms of ε = λ− 1
2 η, 

[ε] = L1/2,

δεe
a = ψγ aε ,

δεψ = Dε + λeaγ
aε ,

δεω
a = 0 , (1.8)

where D = d −ωaγ
a is the Lorentz covariant derivative. Since ωa is supersymmetry invariant, so 

is H0 which only contains this field. Thus, the action obtained from H(ω, e, ψ; λ, α) −H0(ω, α)

is invariant under the local supersymmetry transformations (1.8), and provides the first order 
formulation of (1, 0) D = 3 AdS supergravity. Moreover, the leading λ term in H − H0, H1, 
is also invariant under the transformations (1.8) for λ = 0, and hence provides the action for 
D = 3 Poincaré supergravity; this will not be the case for higher D. Also, as noted in [3], in 
the general (p, q) case the action contains a term that comes from H0 which is not invariant 
under the ε gauge transformation that cannot be ignored and the linear term in λ does not yield 
Poincaré supergravity. In this case, a proper Poincaré limit may still be taken by enlarging G as 
G to osp+(p|2) ⊕ osp−(q|2) ⊕ so(p) ⊕ so(q), and adding to H the two invariant so(p) and 
so(q)-valued four-forms [4,18].

1.2. The D = 5 case

The next simplest case is D = 5. The smallest real superalgebra that contains the AdS5 one 
so(4, 2) ∼ su(2, 2) is the 24-dimensional G = su(1|2, 2). A su(1|2, 2)-valued form can be writ-
ten in the form

1 It is terminologically unfortunate that algebras of different dimensions are sometimes said to be related by so-called 
‘generalized’. Inönü–Wigner contractions. There are, of course, generalizations of the original I–W contraction procedure 
with respect to a subalgebra, but these are also dimension-preserving, as it corresponds to the mathematical idea of 
contraction (see e.g. [17]).
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A=
(

f ξ

iξ̄ 4if0

)
, f = if0 + faγ

a + 1

4
fabγ

ab ; F= dA+A
2 , (1.9)

where γ a , a = 0, . . . , 4 are 4 × 4 gamma matrices, ξ is a four-component spinor form and ξ̄ its 
adjoint. Let us introduce again λ, [λ] = L−1, and new fields ea , φ, ωab and ψ , with dimensions 
1, 1, 0 and 1/2 respectively, through the scalings f0 = λφ, fa = λea , fab = ωab , ξ = λ

1
2 ψ . We 

now express the 16 real bosonic fields 1(φ) + 5(e) + 10(ω) and the 4 complex fermionic ones ψ
(8 real) associated with the supergroup parameters in the form

f = iλφ + λeaγ
a + 1

4
ωabγ

ab , ξ = λ
1
2 ψ . (1.10)

Using these expressions in F and H = Tr(F3) and collecting the different powers in λ we obtain

H(φ, e,ω,ψ) = H0 + H1λ + H2λ
2 + H3λ

3 + H4λ
4 + H5λ

5 , (1.11)

where H0 = H0(ω) and Hi , = 1, . . .5, depend on the gauge fields ea , φ, ωab and ψ .
The term H3 in λ3 has the right dimension [H3] = LD−2 = L3 for a D = 5 action. Therefore, 

it makes sense comparing the CS action obtained from H3 with that of simple D = 5 supergravity 
which, in the first order formulation, has the same spacetime fields content; including also the 
terms proportional to λ4 and λ5 and retaining only the last three terms would lead (removing a 
common λ3 factor) to an action with a ‘cosmological constant’ term in λ2 coming from H5 (as 
it would be similarly the case taking the higher order terms in D = 3 [1]). However, here there 
is no reason why local supersymmetry should be preserved by selecting any group of terms in 
(1.11): since the su(1|4) ε gauge transformations in terms of the rescaled fields depend on λ,

δεφ = −1

4

(
ε̄ψ − ψ̄ε

)
δεe

a = − i

4

(
ε̄γ aψ − ψ̄γ aε

)
δεω

ab = iλ

2

(
ε̄γ abψ − ψ̄γ abε

)
δεψ = dε + 1

4
ωabγ

abε + λ
(−3iφ + eaγ

a
)
ε , (1.12)

the individual terms are not invariant separately. The leading H0 term will be invariant under the 
above gauge algebra for λ = 0, but this will not be the case for the other terms including the 
one with the correct dimension H3. In fact, it is easily seen that the H3 term in (1.11) does not 
lead to D = 5 supergravity. The quickest way to see it is by noticing that this H3 term coming 
from the su(1|4) based CS action is not gauge invariant under the one-dimensional subgroup 
of transformations ϕ corresponding to the field φ, δϕφ = dϕ, in contrast with the action of the 
D = 5 supergravity.

1.3. The D = 11 case: preliminary considerations

The D = 11 AdS algebra so(2, 10) is contained in sp(32), which is of dimension (32 +1) ·16. 
The relevant superalgebra in this case would be, in principle, the smallest one that contains 
sp(32), namely osp(1|32), of dimension 528 + 32 = 560. A convenient way of describing its 
elements is provided by the osp(1|32)-valued one-form gauge field supermatrix A given by

A=
(

f ξ

ξ̄ 0

)
, f = f aγa + 1

f abγab + f a1...a5γa1...a5 , (1.13)

4
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where γa are the 32 × 32 gamma matrices and ξ is a 32-component Majorana spinor one-form. 
Clearly, the osp(1|32)-valued one-forms in (1.13) cannot be identified with the one-form fields 
ea , ωab , ψα and the three-form field A of Cremmer–Julia–Scherk (CJS) D = 11 supergrav-
ity [19].

One could think of using two copies [10] osp(1|32), ̃osp(1|32), to write the gauge fields f a , 
f̃ a , f ab , f̃ ab , f a1...a5 , f̃ a1...a5 , ξα , ̃ξα , as linear combinations of new fields ea , Ba , ωab , Bab , 
Ba1...a5 , B ′a1...a5 , ψα , ψ ′α , with dimension L except for [ψα] = L

1
2 , [ψ ′α] = L

3
2 , [ωab] = L0

(and perhaps B ′a1,...,a5 and Ba) using the scale factor λ, [λ] = L−1. It was conjectured in [10] that 
the three-form field A could be a composite of ea , Bab , Ba1...a5 , ψα , ψ ′α as explicitly considered 
in [20]. A closed, osp(1|32) gauge invariant twelve-form H has the general expression

H = Tr(F6) + αTr(F2)Tr(F4) + β
(

Tr(F2)
)3

, (1.14)

where F = dA +A
2. The corresponding form H̃ for õsp(1|32) is expressed similarly in terms of 

F̃ = dÃ+ Ã
2. Then, introducing H ′(λ) = H(λ) + H̃ (λ) and collecting the different powers of λ

we can write

H ′(λ) = H(λ) + H̃ (λ) = H ′
0 + · · · + H ′

9λ
9 + H ′

10λ
10 + H ′

11λ
11 . (1.15)

It was conjectured [10] that the H ′
9 term would depend on ωab, ea and ψα , with the remaining 

fields either included in A = A(ea, Bab, Ba1...a5, ψα, ψ ′α) or absent, and that it would also be 
invariant under local supersymmetry. However, this has not been verified, and there are arguments 
against this being the case. First, the bosonic and fermionic on-shell degrees of freedom do not 
match unless there is a large hidden extra gauge symmetry. To be more precise, let us consider 
Horava’s choice of osp(1|32) ⊕ õsp(1|32) and possible gauge action depending on ea , Ba , ωab , 
Bab , Ba1...a5 , B ′a1...a5 , ψα and ψ ′α with the following assumptions: (a) the action corresponding 
to H ′

9 has the gauge symmetries of the above fields realized in the generic form δAi = dαi + . . . ; 
(b) the fields Ba and B ′a1...a5 , which do not enter in A, are also absent in H ′

9, so that we can 
ignore them; (c) the field equations of ωab can be used to eliminate the ωab; (d) the linearized 
field equations for the elfbein ea and the gauge one-form fields Bab and Ba1...a5 have a structure 
similar to the ea equation of D = 11 supergravity and (e) the linearized field equations for ψα

and ψ ′α are linearized Rarita–Schwinger equations. With these assumptions, the counting of 
on-shell degrees of freedom goes as follows:(

ea
μ (ψα

μ , ψ ′α
μ) Bab

μ B
a1...a5
μ

9 · 11 − 55 32·8
2 each 9 · (11

2

)
9 · (11

5

) )
, (1.16)

i.e. there are 4697 bosonic and 256 fermionic degrees of freedom.2 But D = 11 supergravity 
has 44 + 84 = 128 bosonic and 128 fermionic degrees of freedom, so that for H ′

9 to lead to CJS 
supergravity there should be 128 fermionic and 4569 bosonic extra hidden gauge symmetries.

Secondly, there is no reason why the H ′
9 term in the expansion (1.15) of the right dimen-

sion L9 should correspond to a locally supersymmetric action. Besides, the local supersymmetry 

2 The vielbein ea
μ and Rarita–Schwinger ψα

μ fields in D dimensions have, respectively, (D − 2)D − (D
2
) = 1

2 (D −
1)(D −2)−1 (after using local Lorentz invariance) and 1

2 (D−3)2[D/2] on-shell degrees of freedom. Similarly, a p-form

gauge field Aμ1...μp has 
(D−2

p

)
on-shell d.o.f.; the B’s above are one-form gauge fields with additional antisymmetric 

a indices.
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transformations of D = 11 supergravity are not osp(1|32) gauge transformations, but rather lo-
cal superspace transformations of the component fields the commutators of which close on-shell 
only (see, for instance, [21]). It is thus unclear how the osp(1|32) gauge transformations could 
lead to these local superspace transformations after selecting the H ′

9 term in (1.15).
A second problem is the three-form field A in the action of CJS supergravity. For A to be a 

composite field, A = A(ea, Bab, Ba1...a5 , ψα, ψ ′α), the supersymmetry algebra of the H ′
9 term 

in (1.15) would have to be related with the algebra defined by the MC equations including the 
one-form gauge fields appearing in the expression of a composite A. A natural candidate for 
a supersymmetry algebra would be a contraction of osp(1|32) ⊕ õsp(1|32) but, as shown in 
[22], there is no way of obtaining by contraction the algebras given in [20,23] that allow for a 
one-forms decomposition of the CJS supergravity three-form field A.

As we have seen, already in the D = 5 case where there is no A complicating matters, the 
CS action does not lead to D = 5 supergravity. So it is hard to imagine why moving to D = 11
would improve the situation so that supersymmetry is preserved after selecting the proper H ′

9
term in the expansion (1.15). Further, if there were such a mechanism, working only in D = 11
and ensuring local supersymmetry after taking a non-leading term, it would presumably also 
apply to the H ′

10 and H ′
11 terms in (1.15); again, this would yield a D = 11 supergravity with a 

cosmological constant, which has been shown not to exist [24].
The D = 11 case is more convoluted than the D = 5 one not only due to the three-form 

field A, but also because of the auxiliary zero-form field Fa1···a4 which has to be added in the first 
order formulation of D = 11 supergravity, which is the one that would naturally appear from a 
CS action. But even if these difficulties were overcome, the D = 5 case already tells us that the 
resulting action would not be locally supersymmetric. In fact, an attempt made in [13] using just 
one osp(1|32) algebra, ignoring A and Fa1···a4 and keeping only ea , ωab and ψα , supports this 
conclusion.

One may consider adding separately an osp(1|32)-gauge invariant dimensionless three-form 
field A to look for an action involving the fields of a single osp(1|32). The additional A is 
inert under osp(1|32) gauge transformations and, under two-form gauge transformations �, A
transforms as δ�A = d�; thus, the four-form dA is δ�-gauge invariant. Then, the general gauge 
invariant twelve-form H(F, A) (cf. (1.14)) is given by

H = T r(F6) + αT r(F4)T r(F2) + β
(
T r(F2)

)3 + νT r(F4)dA

+ δ
(
T r(F2)

)2
dA+ ρT r(F2)(dA)2 + σ(dA)3 , (1.17)

where α, ..., σ are dimensionless constants.
An action with the right dimensions would correspond to the H9 term in the expression above 

with A = λ3A, [A] = L3. However, this construction still would not explain the need for the 
auxiliary Fa1···a4 fields. In fact, one of the results of this paper is that, since contractions do not 
appear to play a role in the present problem, the field re-scalings need not being those that allow 
for a consistent λ → 0 limit. Once fa = λee is chosen, consistency of the contraction limit would 
require a new field, ea1···a5 say, with fa1···a5 = λBa1···a5 , so that the osp(1|32) MC equations

df a ∝ εab1···b5c1···c5fb1···b5fc1···c5 + · · · (1.18)

have a well defined λ → 0 limit. But, if this consistency condition is removed, we may now set 
fa1···a5 = ωa1···a5 , [ωa1···a5 ] = L0, (rather than fa1···a5 = λBa1···a5 , which implies [Ba1···a5] = L1). 
Indeed, it will be shown that the ωa ···a fields play the role of the Fa ···a (see below eq. (3.61)). 
1 5 1 4



D. Camarero et al. / Nuclear Physics B 923 (2017) 633–652 639
Unfortunately, a calculation shows that the λ9 term in the expansion of this new, generalized CS 
action is not D = 11 supergravity (in particular, the fermion equation will not correspond to the 
spinor equation for CJS supergravity). This was to be expected since, again, there is no reason 
for this term to be invariant under supersymmetry gauge transformations.

Nevertheless, we will show below that our construction for the fields associated with the 
bosonic part of a osp(1|32), supplemented by the three-form A, does work for the bosonic sector 
of D = 11 supergravity. In other words, there are constants α, · · · , σ in (1.17) such that the H9
term in H resulting from the re-scalings f a = λea , f ab = ωab, f a1···a5 = ωa1...a5 and A = λ3A

lead to the equations of its bosonic sector. In particular, the ωa1...a5 equation determines ωa1...a5

itself in terms of the coordinates of dA = (dA)a1···a4e
a1 · · · ea4 ,

ωa1...a5 ∝ (dA)[a1···a4ea5] , (1.19)

so that ωa1...a5 plays the role of the auxiliary zero-forms of D = 11 supergravity. In this way, 
the fact that the D = 11 supergravity action contains a generalized ‘CS term’ for the field A, the 
eleven-form A dA dA, is incorporated into the full bosonic action through the sum of powers of 
λ described above. This result also extends others in refs. [12,13] in which standard pure gravity 
with just ωab and ea , without the fields φ in D = 5 and A in D = 11, is derived from a CS action 
in these odd dimensions.

The plan of the paper is as follows. The ‘generalized CS action’ is defined in Sec. 2, where its 
expression in powers of the scale factor λ is given. Then, we study in Sec. 3 the field equations 
of the model and compare them with those of the bosonic sector of supergravity. We end with 
some conclusions and further comments. Some calculations are relegated to Appendix A.

2. The generalized sp(32) Chern–Simons action

2.1. sp(32) Cartan structure equations and gauge transformations

In terms of its MC forms f α
β , α, β = 1, . . .32, the sp(32) algebra is defined by

df α
β = −f α

γ ∧ f γ
β , df = −f 2 . (2.20)

Using the symplectic metric Cαγ = −Cγα , fαβ is given by

fαβ = Cαγ f γ
β , fαβ = fβα . (2.21)

Since fαβ is a 32 × 32 symmetric matrix, it can be expanded in the basis of (αβ)-symmetric 
matrices given by ‘weight one’ antisymmetrized products of D = 11 Dirac matrices as

fαβ = faγ
a
αβ + 1

4
fabγ

ab
αβ + fa1...a5γ

a1...a5
αβ . (2.22)

The 1/4 factor is introduced to obtain the usual relation between the spin connection and its 
curvature (eq. (3.71)) as well as the definition of the torsion (eq. (3.45)).

Gauge curvatures are introduced by moving from the MC equations (zero curvature) to the 
Cartan structure ones, in which the sp(32) curvatures express the failure of f to satisfy the sp(32)

algebra MC equations. Let � be the two-form matrix incorporating the curvatures. Then,

� =Df = df + f 2 , (2.23)

where f contains the one-form gauge fields, and

d� = �f − f � = [�,f ] , (2.24)
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is the Bianchi identity D� = d� + [f, �] ≡ 0 for the sp(32) connection f . As f , the curvature 
� may be similarly expressed as

�αβ = �aγ
a
αβ + 1

4
�abγ

ab
αβ + �a1...a5γ

a1...a5
αβ . (2.25)

The infinitesimal gauge transformations of f, � are given by the standard expressions,

δbf = db + f b − bf = db + [f,b] , δb� = �b − b� = [�,b] , (2.26)

where the zero-form matrix b = bα
β contains the gauge functions

b = baγ
a + 1

4
babγ

ab + ba1...a5γ
a1...a5 . (2.27)

2.2. Generic expression for a CS-type action

Since the bosonic sector of D = 11 supergravity contains the three-form field A, we add it 
explicitly to the one-form sp(32) fields by introducing the three-form A inert under sp(32) δb

gauge transformations and under δ� ones. Thus, the most general twelve-form H(�, A), closed 
and invariant under both δb and δ� gauge transformations, may be written as

H = T r(�6) + αT r(�4)T r(�2) + β
(
T r(�2)

)3 + νT r(�4)dA

+ δ
(
T r(�2)

)2
dA+ ρT r(�2)(dA)2 + σ(dA)3 , (2.28)

where the bosonic � has replaced F in eq. (1.17), in which fermions were present. Then, the 
integral

I =
∫

M11

B, dB = H , (2.29)

may be used to obtain a CS-type action.
Our task now is to extract from eq. (2.28) the physically relevant terms (it will turn out that 

only the first term T r(�6) and those in ν and σ will contribute) and to fix their corresponding 
coefficients so that the resulting action determines the equations of motion for the bosonic sector 
of supergravity. Because of the presence of the three-form A, this action will be referred to as 
the generalized CS action for the bosonic sector of D = 11 supergravity.

2.3. Generalized CS action for the bosonic sector of D = 11 supergravity

Again, the component fields in the one-form f , the two-form � and the three-form A field 
are dimensionless. Dimensions are introduced by setting

A= λ3A , [A] = L3 , (2.30)

f = λeaγ
a + 1

4
ωabγ

ab + ωa1...a5γ
a1...a5 , (2.31)

where in (2.22) we set
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fa = λea , [ea] = L ,

fab = ωab , [ωab] = L0 , (2.32)

fa1...a5 = ωa1...a5 ,
[
ωa1...a5

] = L0 .

With our mostly plus metric we use real gamma matrices such that γ a1...a11 = εa1...a11 . Besides 
the 1/4 factor in (2.31) that was fixed in (2.22), there is no special reason for the factors accom-
panying the fields ea , ωa1···a5 and A. Different coefficients would lead to different values for the 
constants α, . . . , σ in (2.28) after requiring that the action corresponds to the bosonic sector of 
supergravity. Thus, these constants depend on the way the fields are introduced and will not affect 
the final result. Keeping this in mind, we now look for the relevant terms and their coefficients 
for the particular choices in (2.31), (2.30).

An action for D = 11 gravity has dimensions LD−2 = L9. Thus, writing now H |i for Hi and 
expressing the twelve-form H in (2.28) and the eleven-form B in powers of λ, we obtain

H = H |0 + λH |1 + ... ,

B = B|0 + λB|1 + ... . (2.33)

Then, H |i = dB|i allows us to write for the different IGCS|i = ∫
M11 B|i ,

IGCS = IGCS |0 + λIGCS |1 + ... . (2.34)

The physically relevant term is in λ9 since [IGCS |9] = L9. Therefore, IGCS |9 = ∫
M11 B|9.

We are thus interested in H |9. Since H contains the sp(32) curvature two-forms �a , �ab , 
�a1...a5 of (2.25), we need their expressions in terms of ea , ωab , ωa1...a5 . To simplify the calcula-
tions, we write

� = df + f 2 = �0 + λ�1 + λ2�2 , (2.35)

with f in (2.31) expressed as

f = λe + ωL + ω5 = λe + ω , (2.36)

where e = eaγ
a , ωL = 1

4ωabγ
ab is the spin connection, ω5 = ωa1...a5γ

a1...a5 and ω = ωL + ω5. 
In this way, the sp(32)-valued curvature in (2.35) gives

� = d(λe + ω) + (λe + ω)(λe + ω)

= dω + ω2 + λ(de + ωe + eω) + λ2e2

≡ R(ω) + λT + λ2�2 . (2.37)

Thus, �0 = R(ω) = dω+ 1
2 [ω, ω], �1 = T (e, ω) = de+[ω, e] and �2(e) = e2 = 1

2 [e, e]. Notice 
that T contains a piece proportional to γ a and another proportional to γ a1...a5 ; similarly, the 
curvature R(ω) contains contributions proportional to γ a , γ ab and γ a1...a5 , because it depends 
on both ωL and ω5. The previous equations tell us that to obtain the piece H |9 that comes e.g.
from T r(�6), one has to consider all the contributions containing a number n0 of R factors, n1
of T and n2 of �2 in such a way that

1. n0 + n1 + n2 = 6 (there are 6 curvatures)
2. n1 + 2n2 = 9 ,

where the first condition guarantees that the order of the forms is twelve and the second one that 
their length dimension is nine. The only two solutions are:
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• n2 = 4, n1 = 1, n0 = 1, or
• n2 = 3, n1 = 3, n0 = 0

Thus, the R, T , �2 contributions are of the form

T r(�6)|9 = T r(W(�4
2, T ,R)) + T r(W(�3

2, T
3,R0)) , (2.38)

where e.g. W(�4
2, T , R) is the sum of all nine-form ‘words’ that can obtained out of four �2, 

one T and one R. This would give us the piece T r(�6)|9 of H |9. We could now add to (2.38)
the contributions to H |9 coming from the other terms in (2.28), to find an 11-form B|9 with 
dB|9 = H |9, and compare with the action of the bosonic sector of D = 11 supergravity. Instead, 
we will obtain directly the field equations for the action 

∫
M B9 from the original, unexpanded H

twelve-form.

3. Field equations

The field equations for IGCS can be obtained directly from H in a way similar to that used in 
[16]. To find them, we use the following fact (see [25]): let if α

β , i�α
β , iA and idA be the inner 

derivations associated with the fields and curvatures of the algebra with respect to f , �, A and 
dA, defined by

ifαβ fγ δ = δα
(γ δ

β

δ)
, i�αβ �γ δ = δα

(γ δ
β

δ)
, iAA= 1 , idAdA= 1 , (3.39)

and zero otherwise. If H = dB is a form defined on this algebra that defines the action through 
I = ∫

B , then the field equations for I are given by i�α
β H = 0 and idAH = 0. Let us denote the 

equations of motion for f and A by E(f ) = 0 and E(A) = 0 respectively. Then, using (3.39) in 
(2.28) we obtain

E(f ) = 6�5 + 4αT r(�2)�3 + 2αT r(�4)� + 6βT r(�2)2�

+ 4νdA�3 + 4δdAT r(�2)� + 2ρ(dA)2� = 0 , (3.40)

where E(f ) is a ten-form, and by

E(A) = ν T r(�4) + δ (T r(�2))2 + 2ρ (dA)T r(�2) + 3σ(dA)2 = 0 , (3.41)

where E(A) is an eight-form.
We have to extract now from the above the equations for e, ω (ωL and ω5) and A for the action 

IGCS |9. Proceeding as in [17], where the equations for the dimensionful fields were derived from 
those for the dimensionless ones by selecting the appropriate powers of λ, they are given by

E(e) = (E(f )|9−1=8)|γ [1] ,

E(ω) = E(f )|9 , E(ωL) = (E(f )|9)γ [2] , E(ω5) = (E(f )|9)γ [5] (3.42)

E(A) = E(A)|9−3=6

since [e] = L1, [A] = L3, [ω] = L0, and where the subscripts γ [2,5] refer to the contributions 
proportional to the antisymmetrization of two and five D = 11 gamma matrices respectively. 
Eqs. (3.42) constitute the complete set of equations of our bosonic model.

We have to find now E(f )|8, E(ωL)|9, E(ω5)|9 and E(A)|6 by taking into account that

�R + λT + λ2�2 , dA= λ3dA .
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3.1. Field equation for ω

We need to know the contributions of all terms in equation (3.40), namely all the contributions 
containing n2 factors �2 , n0 factors R and n1 factors T in such a way that the order of the form 
is 10 and its dimension L9. Then, we find that the ω equation is given by the ten-form expression

E(ω) = E(f )|9 = 6W(�4
2, T ) + 4νdAe6 = 0 , (3.43)

where the first term comes from the first one in eq. (3.40) and the other comes from the ν term. 
Since ω = ωL + ω5, eq. (3.43) contains two different contributions, one proportional to γ a1a2

from the first term that gives the equation for ωL, and another proportional to γ a1...a5 that comes 
from both terms and gives the equation for ω5. We consider them now.

The first ten-form in (3.43) is

W(�4
2, T ) = e8T + e6T e2 + e4T e4 + e2T e6 + T e8 , (3.44)

where T is given (see (2.37), (2.36)) by

T = de + [ω,e] = TL + [ω5, e] ; TL = de + [ωL, e] , (3.45)

and the explicit expression for the torsion TL is

TL = T aγa = (dea + ωa
be

b)γa . (3.46)

Then, the first term on the l.h.s. of (3.43) can be written as

W(�4
2, T ) =W((e2)2, TL) +W(e9,ω5) . (3.47)

3.1.1. Equation for ωL(ωab)

To see how the γa1a2 and γa1...a5 contributions come out, note the identity

γaγa1...ak
=

k∑
i=1

(−1)i−1 ηaai
γa1...âi ...ak

+ γaa1...ak
. (3.48)

When contracted with the indices of, say eaBa1...ak , one gets:

eaγaB
a1...ak γa1...ak

= k eaBaa2...ak
+ γaa1...ak

eaBa1...ak , (3.49)

i.e., all terms in the sum (3.48) add up, and the first term appears k times. The same pattern exists 
when two matrices γa1...ak

, γa1.....as are multiplied, but now there are contributions with all possi-
ble number of contractions. The e8TL terms have the structure γ [8] · γ [1] (again, the superscripts 
indicate the number of γ ’s in the skewsymmetric products). This gives, schematically,

γ [8] · γ [1] ∼ γ [9] + γ [7] (3.50)

where there are no contractions in γ [9] and one in γ [7]. The γ [7] contribution will cancel because 
only the matrices symmetric in all indices contribute (γ [1,2,5,6,9,10] are symmetric; 1, γ [3,4,7,8]
skewsymmetric). Thus, only the e8TL terms appear in the ωL equation since

γ a1...a9 ∝ εa1...a9abγab . (3.51)

In general, since with our metric signature we can choose γ a1...a11 = εa1...a11 , we have

γ ak+1...a11 = (−1)
k(k−1)

2
εb1...bkak+1...a11γb1...bk

. (3.52)

k!



644 D. Camarero et al. / Nuclear Physics B 923 (2017) 633–652
On the other hand, the terms e9ω5 coming from (3.47) are, again schematically, of the form

γ [9] · γ [5] ∼ γ [14] + γ [12] + γ [10] + γ [8] + γ [6] + γ [4] . (3.53)

The γ [10] ∼ γ [1] contribution vanishes because there is no ωa , i.e. there is no equation of di-
mension L9 with a single Lorentz index. The only symmetric γ is γ [6]. So the e9ω5 terms only 
appear in the ω5 equation. The ωL equations are then

(E(f )|9)γ [2] = E(ωL) ∝ ea1 ...ea8(TL)a9γ
a1...a9 = 0 . (3.54)

This equation implies TL = 0, which, as usual, can be used to express ωabμ in terms of ea
μ and 

its derivatives.

3.1.2. Equation for ω5 (ωa1...a5 )
This equation has contributions from the two terms in (3.43). One is given by its second term 

4ν(dA)e6 which, due to e6, is proportional to γ [6], and the other is the contribution with four 
contractions from the terms with nine e and one ω5 from W(e9, ω5), which is also proportional 
to γ [6] ∼ γ [5], contained in the first one, 6 W(�4

2, T ). A long calculation shows that this second 
contribution is given by

2 · 9!
4! ea1 ...ea5e

b1 ...eb4ωb4.....b1a6γ
a1...a6 . (3.55)

Taking into account both terms, the ω5 equation of motion is found to be

(E(f )|9)γ [5] = E(ω5) = (3.56)

12 · 9!
4! ea1 ...ea5e

b1 ...eb4ωb4...b1a6γ
a1...a6 + 4ν dAea1 ...ea6γ

a1...a6 = 0 .

Let us see what this equation leads to. In terms of the elfbein components of dA,

dA = (dA)b1...b4e
b1 ...eb4 , (3.57)

it reads

9!
2

ea1 ...ea5eb1 ...eb4ecω
b4...b1

a6
cγ a1...a6 +4ν(dA)b1...b4ea1 ...ea6eb1 ...eb4γ

a1...a6 = 0 , (3.58)

where ωb4...b1
a6 = ωb4...b1

a6
cec. We now write the products of ten e’s above as

ea1 ...ea5eb1 ...eb4ec = εa1...a5b1...b4cdEd ,

for some ten-form Ed . Then, factoring out this form in eq. (3.58) and γ a1...a6 , we find

9!
2

εb1...b4cd[a1...a5 ωb4...b1
a6]

c + 4νεa1...a6b1...b4d(dA)b1...b4 = 0 , (3.59)

where [ ] indicates weight one antisymmetrization in a1...a6. It is shown in Appendix A (sec. A.1) 
that the solution is

ωd1...d5
d = −40

9! ν (dA)[d1...d4 δ
d5 ]
d . (3.60)

This equation relates the one-form gauge field components ωd1...d5 to those of the four-form 
F = dA. It can also be written as

ωd1...d5 = −40
ν (dA)[d1...d4ed5] . (3.61)
9!
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Hence, ωd1...d5 may be expressed in terms of the coordinates of dA so that, as anticipated, ω5
plays a role analogous to that of the auxiliary zero-forms Fa1···a4 of the first order formulation of 
D = 11 supergravity, where F ∝ dA.

3.2. Field equation for A

The sum of the contributions to the field equation (3.41) with the right dimension, E(A)|6 =
E(A) = 0 (see (3.41)), leads to

E(A) = 4ν 32ea1 ...ea6 D ωa7...a11ε
a1...a11 + 3σ(dA)2 = 0 , (3.62)

where again D is the ωL covariant derivative; we see that there is no contribution from the δ and 
ρ terms. In the ea basis, this gives

4ν 32ea1 ...ea6 Db1ωa7...a11b2e
b1eb2εa1...a11 = −3σ(dA)b1...b4(dA)c1...c4e

b1 ...eb4ec1 ...ec4 .

Now we can introduce the eight-form Ed1d2d3 ≡ εd1...d3b1...b8e
b1 ...eb8 , and use it to rewrite the 

factors with eight one-forms ea . If the Ed1d2d3 are then factorized, we obtain

4ν 32 · 6! δa7...a11
b1b2d1d2d3

Db1 ωa7...a11
b2 = 3σεb1...b4c1...c4d1d2d3(dA)b1...b4(dA)c1...c4 . (3.63)

Using the expression (3.60) for ωa7...a11
b2 in terms of the components of dA, the r.h.s of (3.63)

reads

δ
a7...a11
b1b2d1...d3

Db1 ωa7...a11
b2 = −40

9! ν δ
a7...a11
b1b2d1d2d3

δb2
a11

Db1 (dA)a7...a10

= −40

9! ν δ
a7...a10b2
b1b2d1d2d3

Db1 (dA)a7...a10

= −(−7)
40

9! ν δ
a7...a10
b1d1d2d3

Db1 (dA)a7...a10

= 4! · 7
40

9! ν Db1 (dA)b1d1d2d3 = 1

54
ν Db1 (dA)b1d1d2d3 .

In this way, the final expression for the A equation of the motion is found to be

Db1 (dA)b1d1d2d3 =
(

9σ

5120ν2

)
εb1...b4c1...c4d1d2d3(dA)b1...b4(dA)c1.....c4 . (3.64)

Note that this equation has the form required to reproduce the equations of D = 11 supergravity 
in the absence of fermions (see [19,21,26]).

3.3. Field equation for e

We need to know the contributions of all terms in eq. (3.40) again, but now we have to find 
(E(f )|8)|γ [1] = E(e) instead of E(f )|9 in eq. (3.42). Collecting all the possible contributions as 
explained before, we find that they all come from the first and the ν term in eq. (3.40),

E(e) = 6W(�3
2, T

2)|γ [1] + 6W(�4
2,R)|γ [1]

+ 4νdA(�2
2T + �2T �2 + T �2

2)|γ [1] = 0 , (3.65)

where, again, |γ [1] selects the contribution accompanying a single gamma matrix γ a , or equiv-
alently, a ten indices gamma matrix, γ a1...a10 . In particular we need the contributions coming 
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from the term 6W(�3
2, T

2)|γ [1] + 6W(�4
2, R)|γ [1] in (3.65), but this is a very tedious calculation. 

Instead, it is more convenient to take advantage of the fact that the symmetry of the stress-energy 
tensor forces its terms to be the result of contracting three or four indices among two dAμνρσ

(in the dxμ basis), namely (dA)μνρ
α (dA)μνρβ and (dA)μνρσ (dA)μνρσ gαβ . Hence, Einstein’s 

equations have the form

R(�)μν − 1

2
gμνR(�) = P (dA)αργ

μ(dA)αργ ν + Q(dA)αργ δ(dA)αργ δgμν , (3.66)

with P, Q yet to be determined. With the sign for the curvature tensor as in [27], R(�) and 
R(ωL) are related through the elfbein postulate by R(�) = 2R(ωL).

The P , Q constants are now determined using that the covariant derivative of the Einstein 

tensor is zero, ∇μ
(
R(�)μν − 1

2gμνR(�)
)

= 0. Then, the r.h.s of (3.66) must vanish when the 
supergravity field equation for the A field (equivalent to our (eq. (3.64))),

∇μ(dA)μνρσ ∝ ενρσλ1...λ4τ1...τ4(dA)λ1...λ4(dA)τ1...τ4 , (3.67)

where the proportionality factor is unimportant here, and

∂[μ (dA)νργ τ
] = 0 (3.68)

(d(dA) ≡ 0), are used. Indeed, the covariant derivative of the r.h.s of eq. (3.66) may be written 
using (3.68) as a linear combination of (dA)ρσλτ∇ν(dA)ρσλτ and (dA)ρσλν∇μ(dA)ρσλμ. This 
last contribution vanishes due to eq. (3.67). Hence, the first contribution also has to vanish and, 
since it includes a factor (P + 8Q), it follows that P/Q = −8 (see, e.g., [28]). Thus, we only 
need now the overall factor.

To fix it, we take the trace of eq. (3.66) to find the Ricci scalar

R(�)μν
μν = P

12
(dA)μνρσ (dA)μνρσ . (3.69)

We still need the value of P for our action. If we compute the trace of the E(e) = 0 (eq. (3.65)) 
times eaγa , we obtain

0 = 6T r(9ω5eω5e
8 + 9ω2

5e
9 + 9ω5e

2ω5e
7 + 9ω5e

3ω5e
6 (3.70)

+ 9ω5e
4ω5e

5) + 30

4
T r(RLe9) + 4ν(dA)6T r(ω5e

6) ,

where the curvature RL is

RL(ωL) = dωL + ωL ωL = 1

4
(dωab + ωa

cωcb)γ
ab ≡ 1

4
R(ωL)abγ

ab . (3.71)

This expression leads to an equation for the Ricci scalar R(ωL)ab
ab that has the advantage that 

the different contributions are easier to compute. A calculation (Appendix A, eq. (A.95)) shows 
that ν in our action is related to P by

P = 12 · 32 · 4! · 7!
(9!)2

ν2 . (3.72)

Now, to complete the E(e) = 0 equation of supergravity we need to fix the value of ν in (2.28), 
(3.65); to determine the equation E(A) = 0 in (3.64) we further require the value of σ .
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3.4. The generalized CS action for the bosonic sector of D = 11 supergravity

Having found the field equations from our action, we now fix the remaining constants in 
(2.28) so that the equations of bosonic D = 11 supergravity follow from IGCS as stated. First, 
the D = 11 supergravity equation for the e field is, after taking the trace (see e.g. [27]),

R(�) =
(

1

12

)2

(dA)a1...a4(dA)a1...a4 . (3.73)

Comparing with (3.69) we find P = 1
12 , which in eq. (3.72) then gives

ν2 =
(

1

12

)2
(9!)2

32 · 4! · 7! (3.74)

Secondly, the D = 11 supergravity equation for A is

Db1 (dA)b1d1...d3 =
(

1

32 · 27

)
εb1...b4c1...c4d1...d3(dA)b1...b4(dA)c1.....c4 . (3.75)

Comparing with our (3.64) it follows that

σ = ν2
(

40

81

)
. (3.76)

The value of σ follows using eq. (3.74) in eq. (3.76),

σ = 5

4 · (12)2
· (8!)2

4! · 7! . (3.77)

Thus, the needed values of ν and σ in (2.28) are now fixed; the terms in α, β, δ, ρ do not appear 
once the relevant H9 term is selected. Note that it is possible to obtain ν from (3.74) because its 
r.h.s. is positive.

Summarizing, the generalized CS action for the bosonic sector of D = 11 supergravity is 
obtained from

H = T r(�6) + νT r(�4)dA+ σ(dA)3 , (3.78)

with ν and σ given by eqs. (3.76) and (3.77). After the rescalings (2.30) and (2.31), the action 
follows from B|9 with dB|9 = H|9 and the equations of motion for the ω, A and e fields are 
given by eqs. (3.43) [eqs. (3.54), (3.56)], (3.62) and (3.65) [(3.66)] respectively, the constants of 
which have already been fixed. These equations are those of D = 11 supergravity when spinors 
are ignored, and hence B|9 determines the generalized CS action of its bosonic sector.

4. Conclusions

We have shown that the bosonic sector of D = 11 supergravity may be obtained from a gen-
eralized CS action based on the one-form gauge fields of the sp(32) subalgebra of osp(1|32)

supplemented with a dimensionless three-form field A. The need for A could not have been 
guessed without having in mind D = 11 supergravity: the presence of fermions requires A by 
simply counting the degrees of freedom of the D = 11 supermultiplet. Further, we have also 
shown (see (3.60)) that the role of the auxiliary zero-form fields Fa1...a4 that appear in the first-
order version of D = 11 supergravity [26] is played by specific gauge fields associated with 
sp(32).
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The values of the constants that determine our generalized CS bosonic action were obtained 
by requiring that the equations it leads to are those of the bosonic sector of D = 11 supergravity. 
It turns out that only three terms in eq. (2.28) are actually needed, the first one and those in ν
and σ , since the others do not appear in the bosonic equations obtained from the λ9 term in 
the λ expansion. The other terms and their constants would appear when including fermions, 
eq. (1.17), but nevertheless (Sec. 1.3) this will not lead to D = 11 supergravity. Hence, there is 
no generalized CS action based on osp(1|32) with the addition of the three-form field leading to 
CJS supergravity. Therefore, although D = 3 supergravity may be described by a CS action, we 
conclude that this is not so in larger, odd spacetime dimensions.

It was already conjectured in the original paper [19] that osp(1|32) would provide the lead for 
a geometric interpretation of D = 11 supergravity. The main obstacle to relate its field contents to 
the geometric MC fields of a superalgebra in the search for a possible CS action is the appearance 
of the three-form field A. As mentioned, it is possible to retain only one-form fields by assuming 
a composite nature for A [20] and then using a superalgebra that incorporates the one-form MC 
components of A. In fact, there is a whole family of superalgebras related to osp(1|32) that do 
just this [23] (another family of algebras structure has recently been shown to exist for N = 2, 
D = 7 supergravity [30]).

Summarizing, we have shown that although there is no CS action for CJS supergravity, its 
bosonic sector may be described by a generalized CS action in the sense of Sec. 2.2. But, if we 
insist in including fermions, we conclude that the only geometric way of relating CJS super-
gravity to the osp(1|32) superalgebra requires assuming the mentioned composite nature for A
[20,23]. Even so, the connection with osp(1|32) is rather subtle [23]: the family of algebras that 
trivialize the three-form A are deformations of an algebra which is the expansion osp(1|32)(2, 3)

of osp(1|32) in the sense of [16,17].
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Appendix A

This Appendix provides details of some main text calculations.

A.1. Solving for ω5 in the ω5 equation

Let us solve (3.59) for ω5. Contracting the equation with εa1...a6d1...d5 we find,

9!
2

εa1...a5d1...d5 εa1...a5b1...b4cdωb4...b1
a6

c + 4ν εa1.....a6b1...b4d εa1...a6d1...d5(dA)b1...b4 = 0 .

(A.79)

Taking into account that

εa1...akb1...b11−k εa1...akc1...c11−k
= −k! δb1...b11−k

c1...c11−k
(A.80)

for our signature choice, (− + ...+), where δb1...bk
a ...a = ∑

δ
b1
a ...δ

bk
a , we obtain
1 k σ∈sk σ(1) σ (k)
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9!
2

5! δa6d1...d5
b1...b4cd

ωb4...b1
a6

c + 4ν 6! δd1...d5
b1...b4d

(dA)b1...b4 = 0 . (A.81)

Now, using

δ
aa1...ak−1
b1...bk

=
k∑

l=1

δa
bl

δ
a1...ak

b1...b̂l ...bk
(A.82)

in the first term with a = a6, it follows that(
9!
2

5!ωb4...b1
c
c + 4ν 6! (dA)b1...b4

)
δ
d1...d5
b1...b4d

− 9!
2

5! δd1...d5
b1...b4c

ωb4...b1
d
c = 0 . (A.83)

Now, contracting d5 and d in (A.83) we get

ωb4...b1
c
c = −56

9! ν (dA)b1...b4 (A.84)

and, inserting this in (A.83), we find

ω[d1...d4
d
d5] = −ν

4 · 2

9! (dA)[d1...d4 δ
d5]
d . (A.85)

We now use this equation to find ωd1...d4
d
d5 without antisymmetrization. To this end, we use the 

following trick: first we make eq (A.85) more explicit, with d5 interchanged with d , so that the 
antisymmetrization involves d1, · · ·d4 and d ,

ωd1d2d3d4d5
d − ωd1d2d3

d
d5d4

−ωd1d2
d
d5d4d3 − ωd1

d
d3d4d5d2

−ω
d1d2d3d4d5
d = −4 · 2

9! ν
(
(dA)d1d2d3d4δ

d5
d (A.86)

−(dA)d
d2d3d4ηd5d1 − (dA)d1

d
d3d4ηd5d2

−(dA)d1d2
d
d4ηd5d3 − (dA)d1d2d3

dηd5d4
)

.

Antisymmetrizing the indices d1...d5 with weight one leads to

ωd1...d5
d − 4 · ω[d1...d4

d
d5] = −4 · 2

9! ν (dA)[d1d2d3d4δ
d5]
d , (A.87)

and using (A.85) in (A.87), we finally obtain

ωd1...d5
d = −40

9! ν (dA)[d1...d4 δ
d5 ]
d . (A.88)

or, equivalently, (3.61).

A.2. Calculation of the terms in (3.70)

Defining the zero-form matrix d̂A = (dA)a1...a4γ
a1...a4 , eq. (3.61) may be rewritten as

ω5 = −20

9! (d̂Ae + ed̂A) (A.89)

Inserting this relation into (3.70), we obtain
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30T r(RLe9) = 48
20

9! ν2dAT r(d̂Ae7) (A.90)

− 54ν2
(

20

9!
)2

T r(4d̂Ad̂Ae11 + 3d̂Aed̂Ae10 + 4d̂Ae2d̂Ae9

+ 4d̂Ae3d̂Ae8 + 4d̂Ae4d̂Ae7 + 4d̂Ae5d̂Ae6) .

Let us now compute the terms in this equation. First, the trace on the l.h.s. is given by

T r(RLe9) = 1

4
T r(R

b1b2
L a1a2γb1b2e

a1ea2ea3 . . . ea11γa3...a11)

= 1

4
T r(γb1b2γa3...a11)R

b1b2
L a1a2ε

a1...a11E

= 8εb1b2a3...a11ε
a1...a11R

b1b2
L a1a2E

= −8.9!δa1a2
b1b2

R
b1b2
L a1a2E

= −16.9!RLE , (A.91)

where E is an 11-form defined by ea1 . . . ea11 = εa1...a11E, and we have written Rb1b2 =
Rb1b2

a1a2e
a1ea2 . The first term on the r.h.s. of (A.91) contains the form

dAT r(d̂Ae7) = 32(dA)b1...b4e
b1 ...eb4 εa1...a11(dA)a1...a4ea5 ...ea11E

= 32 (dA)b1...b4(dA)a1...a4εa1...a11ε
b1...b4a5...a11E

= −7! · 32 (dA)b1...b4 (dA)a1...a4 δb1...b4
a1...a4

E

= −7! · 4! · 32 (dA)a1...a4 (dA)a1...a4E , (A.92)

where, as before, we have written dA = (dA)b1...b4e
b1 ...eb4 .

The calculation of the remaining terms is slightly more complicated. These terms have the 
form

T r(d̂Aekd̂Ae11−k) = T r(d̂Aγ a1...ak d̂Aγ ak+1...a11 εa1...a11E) (A.93)

= (−1)
k(k−1)

2

k! T r(d̂Aγ a1...ak d̂Aγb1...bk
)εb1...bkak+1...a11εa1...a11 E

= −(−1)
k(k−1)

2 (11 − k)!T r(d̂Aγ a1...ak d̂Aγa1...ak
)E

= −32(−1)
k(k−1)

2 4!(11 − k)!Nk(dA)a1...a4 (dA)a1...a4E ,

where we have used the property (3.52) and the numbers Nk in the equation are defined through

γ a1...ak d̂Aγa1...ak
= Nkd̂A . (A.94)

These numbers may be computed using gamma matrix algebra; alternatively, they can be found 
in Ref. [29]. Their values are: N0 = 1, N1 = 3, N2 = 2, N3 = 66, N4 = −144, N5 = 1680. Then, 
the second trace on the r.h.s. of (A.90) is given by −32 ·168 ·9! ·4!(dA)a1...a4(dA)a1...a4 E. When 
this is taken into account, eq. (A.90) reads

RL = 16 · 7! · 4!
(9!)2

γ 2(dA)a1...a4(dA)a1...a4 . (A.95)
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