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Abstract

An inversion method is formulated for extracting entanglement-related information on two-

particle interactions in a one-dimensional system from measurable one-particle position-and

momentum- distribution functions. The method is based on a shell-like expansion of these norm-1

measured quantities in terms of product states taken from a parametric orthonormal complete

set. The mathematical constraints deduced from these point-wise expansions are restricted by

the underlying physics of our harmonically confined and interacting Heisenberg model. Based on

these exact results, we introduce an approximate optimization scheme for different inter-particle

interactions and discuss it from the point of view of entropic correlation measures.

PACS numbers: 02.30.Mv, 02.30.Zz, 03.67.Mn, 03.75.Gg
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I. MOTIVATION

Let us take the Hamiltonian, in atomic units, of a single harmonic oscillator

Ĥ0(x) = − 1

2

d2

dx2
+

1

2
ω2
0x

2. (1)

, the ground-state normalized solution to the Schrödinger equation is φ0(x, ω0) =

(ω0/π)1/4 exp(−ω0x
2/2). Its square gives the normalized density distribution function,

n(x) = [φ0(x)]2, whose Fourier transform is

n(k) =
1√
2π

e−k
2/(4ω0). (2)

This function can be sampled by X-ray scattering, and by Fourier inversion, one may say that

n(x) is accessible experimentally. The normalized one-particle momentum density distribu-

tion, f(k), is, on the other hand, connected to Compton scattering. The relation between

these real- and momentum-space distributions, i.e., between the two sets of experimental

data, is one-to-one because φ0(x) =
√
n(x) and f(k) are given by

f(k) = [φ0(k, ω0)]
2 =

[(
1

πω0

)1/4

e−k
2/(2ω0)

]2
. (3)

From φ0(x, ω) and φ0(k,Ω) we can determine the corresponding kinetic energies

< K1 >=
1

2

∫ ∞
−∞

dx

∣∣∣∣dφo(x, ω)

dx

∣∣∣∣2 =
1

4
ω (4)

< K2 >=

∫ ∞
−∞

1

2
k2 f(k,Ω) dk =

1

4
Ω (5)

In the noninteracting case, ω = ω0 and Ω = ω0, these are equal, but in the interacting case

below, (ω0 ⇒ Ωs) only Eq.(5) gives the exact result. The definition in Eq.(4), even with the

exact density (ω0 ⇒ ωs) [1] gives [< K1 > / < K2 >] < 1.

When the Gaussian function f(k) is characterized by Ωs 6= ω0, instead of ωs used for the

density distribution, the one-to-one mapping is lost. In case of harmonic external confine-

ment, one should conclude from this observation that we have at least two similar particles

in the ground-state under confinement and, moreover, these particles are dynamically cor-

related. Is there, in the physically most important interacting case, still something useful

which one can extract from the above two observables? How could a proper mathematical

recipe be formulated? These are the questions motivating this note on the application of

reduced information. We feel that examining the weakly interacting two-particle case is a

conservative first step having general information-theoretic relevance.
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II. DECOMPOSITIONS, CONSTRAINTS, AND OPTIMIZATION

Four our interacting system, there is no simple connection between the normalized

position-space density n(x) and the normalized momentum-space density f(k), despite the

fact that they are related by the Fourier transformation between the wave functions, and

associated density matrices, in these spaces [1]. Furthermore, the reduced one-particle den-

sity matrices, the sources of N(x) and F (k) are two-variable functions. They contain more

information than the corresponding one-variable probability densities, i.e., their diagonals.

Besides, since correlation is encoded differently [2] in the observables discussed above, a suc-

cessful recipe for extracting information must rest on both densities. Such chameleon-like

behavior in the observables requires care in their mathematical treatment. One can not

simply follow the Duke of Gloucester who, in Shakespeare’s play Henry VI, stated: ’I can

add colors to the chameleon’.

The details of the one-to-one correspondence outlined above for the one-particle case

suggest that decompositions of N(x) and F (k), when properly normalized, into products of

one-variable functions belonging to complete sets, and the Fourier-transformation (F) link

between these sets, could form the mathematical basis of the recipe. In the extraction of

information, one requires spatially-independent decomposition weights. Since these weights

are eigenvalues of the underlying one-body matrices they allow a detailed analysis of en-

tanglement entropies. However, the two-variable eigenfunctions, i.e., the natural orbitals,

are not directly accessible experimentally. Thus, physically important information, say the

energy scales behind extensions of these optimal orbitals in real space, remains intact.

In this note we consider a weakly interacting two-particle system under common harmonic

confinement (1/2)ω2
0(x21 + x22). This is the standard condition, e.g.in recent experiments on

optically trapped systems with controllable number of constituents [3]. For this system we

introduce, assuming ωs 6= Ωs, the two Gaussians

φ1(x, ωs) =
(ωs
π

)1/4
e−

1
2
ωsx2

(6)

φ2(k,Ωs) =

(
1

πΩs

)1/4

e−
1
2

k2

Ωs . (7)

in order to model the correlated density distribution function, N(x) = [φ1(x)]2, and the

correlated momentum distribution function, F (k) = [φ2(k)]2. The case ω0 = ωs = Ωs

obviously corresponds to the noninteracting situation where, of course, φ2(k) = F [φ1(x)].
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The desired product-representations of the experimental data-functions, N(x) = [φ1(x)]2

and F (k) = [φ2(k)]2, with common spatially-independent weighting coefficients necessary

for a linear mapping, such as Fourier transformation, are given by

N(x, ωs) =
∞∑
m=0

(1− Z)Zm [φm(
√
ω̄x)]2 (8)

F (k,Ωs) =
∞∑
m=0

(1− Z)Zm [φm(k/
√
ω̄)]2 (9)

φm(
√
αu) =

(α
π

)1/4 1√
2mm!

e−
1
2
αu2

Hm(
√
αu). (10)

Here ω̄ is an orbit-parameter. For Gaussian densities these Mehler’s [4] representations are

point-wise [5], and
∑∞

m=0(1− Z)Zm = 1. The constraints on the expansions are

ωs = ω̄
1− Z
1 + Z

(11)

1

Ωs

=
1

ω̄

1− Z
1 + Z

, (12)

from which ω̄ =
√
ωsΩs and Z = [1−

√
ωs/Ωs]/[1 +

√
ωs/Ωs] ≤ 1. Since we know from the

physics [1] of kinetic energy that [< K2(Ωs) > / < K1(ωs) >] ≥ 1, we have (Ωs/ωs) ≥ 1.

A useful probabilistic measure of correlation is the purity Π. From the properties of our

normalized occupation numbers, Pm ≡ (1− Z)Zm, this measure is given by

Π =
∞∑
m=0

(Pm)2 =
1− Z
1 + Z

=

√
ωs
Ωs

≤ 1, (13)

in terms of the ratio of ωs and Ωs, which characterize the experimentally accessible dis-

tributions in position and momentum spaces, respectively. Related, commonly applied

information-theoretic quantities are [6] the Rényi’s (R) and von Neumann’s (N) entropies

SR(q) =
1

1− q
ln

(1− Z)q

1− Zq
(14)

SN = −
[
q2
d

dq

(
1− q
q

SR(q)

)]
q=1

= − ln(1− Z) − Z

1− Z
lnZ. (15)

Von Neumann’s SN is the entropy of thermodynamics. But, in agreement with an earlier re-

mark [7], the above measures depend solely on a ratio of physical parameters. For entropies,

taken at arbitrary q values, the orbit-extension parameter, ω̄, is not needed. Therefore,

pure information-theoretic measures alone are not applicable directly to determine scale-

dependent physical quantities. Determining the sign of the inter-particle interaction (see,

below) could be a nontrivial problem for reverse engineering, due to duality [8–10].
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To proceed in our realistic modeling of a confined system [3], we add to the Schrödinger

Hamiltonian the tunable (via λ, see below) two-particle interaction

Ĥ(x1, x2) = − 1

2

(
d2

dx21
+

d2

dx22

)
+

1

2
ω2
0(x21 + x22) + vH(|x1 − x2|), (16)

When vH 6= 0, we get Ωs 6= ω0, ωs 6= ω0, Ωs 6= ωs. In order to have a rigorous foundation

for understanding information-extraction from observables, we turn to the specific [11] in-

teraction vH(|x1 − x2| = λ(ω2
0/2)(x1 − x2)2. Based on this interaction, we recently derived

closed-form expressions [12] for both two-variable one-matrices

Γ1(x1, x2) = φs(x1)φs(x2)× e−D[(x1−x2)/
√
2]2 (17)

Γ1(k1, k2) =
1√

π(ωs + 2D)
e−

1
2
(k2

1+k
2
2)

ωs+D
ωs(ωs+2D) e+

Dk1k2
ωs(ωs+2D) (18)

where, with ωs ≡ 2ω1ω2/(ω1 + ω2), we introduced the following abbreviations

φs(x) =
[ωs
π

]1/4
e−

1
2
ωs x2

(19)

D =
1

4

(ω1 − ω2)
2

ω1 + ω2

≥ 0. (20)

We derive ω1 = ω0 and ω2 = ω0

√
1 + 2λ in the underlying [12] normal-mode separation

of the Schrödinger equation with Eq.(16). Thus, for the repulsive harmonic inter-particle

interaction, the allowed range is λ ∈ (−0.5, 0]. Both ωs and D, and therefore Z, show a

dual character [8–10]. This means that to any allowed repulsive coupling there exists a

corresponding attractive one with the same value for Zl. Clearly, with Heisenberg’s inter-

particle interaction model [11] the measurable N(x) = Γ1(x, x) and F (k) = Γ1(k, k) are

known theoretically. Therefore, in this case, we get Ωs = ωs + 2D, by which the kinetic

energy becomes < K2 >= (1/4)(ωs + 2D) > (1/4)ωs =< K1 >. But, and this is crucial to

information-extraction, by taking the diagonal of Eq.(17) to get a measurable distribution

we have no separate access to D(ω1, ω2) which produces non-idempotency.

Finally, we turn to an optimization procedure which may connect two Schrödinger Hamil-

tonians. One could replace, following a recent proposal [13], a realistic two-particle Hamilto-

nian having non-harmonic inter-particle interaction by the Heisenberg Hamiltonian (H). For

instance, one could apply total-energy correspondence as a constraint on such replacement.

One may argue, of course, that the λ-coupling in Eq.(16) has been chosen qualitatively and

it is this mapping correspondence which would allow it to be determined quantitatively. We
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expect, based on physical considerations, that such an optimized correspondence between

two Hamiltonians can be reasonable only if the harmonically confined particles interact

weakly. [3]. At that small coupling the non-idempotency driver scales as D ∼ λ2, i.e., the

deviations of ωs and Ωs > ωs from ω0 are small. The associated entropies are small as

well. However, at stronger couplings, one may get a serious problem by applying such an

optimization scheme to information-theoretic measures.

We now quantify this problem by considering the attractive (λ > 0) case in Eq. (16).

Say we construct a more realistic model by taking for the inter-particle interaction

vC(|x1 − x2|) =
Λ

(x1 − x2)2

with Λ > 0. We focus here on the strong coupling limit [14, 15]. From the prescribed

equivalence of ground-state energies EH(λ→∞) ∝
√

1 + 2λ and EC(Λ→∞) ∝
√

1 + 4Λ,

with vH(λ) and vC(Λ) respectively, we get the simple correspondence λ = 2Λ. However, with

the singular interaction above. one gets, in the associated Wigner-crystal limit at strong

coupling, Λ-independent occupation numbers [14, 15]. Thus the purity is approximately

ΠC(Λ→∞) ' 0.528. In the energetically optimized Heisenberg case, i.e., with a harmonic

interaction vH(λ = 2Λ), we obtain the different behavior, ΠH(Λ) '
√

2/Λ1/4 at Λ→∞.

This, seemingly, moderate numericaldifference in an information-theoretic measure is

related, physically, to crucially different behaviors of the underlying wave function as a

function of the relative coordinate. Our quantitative observation at strong coupling is not

in contradiction with the prediction [13] which relies on perturbation theory. Clearly, one

can only get a physically reasonable approximation for the linear entropy, LC = 1− ΠC , at

small (i.e., perturbative) coupling within the proposed optimization framework.
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III. SUMMARY

An inversion method is formulated for extracting entanglement-related information on

two-particle interactions from measurable one-particle distribution functions in position and

momentum spaces. The method is based on shell-like expansions of these measurable norm-

1 quantities in terms of properly weighted product states taken from a parametric complete

orthonormal set. It is found that without further physical details, encoded in the two-variable

reduced one-particle density matrices, an unambiguous characterization of the inter-particle

interaction is not possible by inverting such information.

We have, therefore, given a concrete answer to Pauli’s general question [16] of whether the

position and momentum probability densities are sufficient to determine the statistical state

operator. These distributions are not sufficient. One method for resolving the dual character

in the sign of an inter-particle interaction is to make use of the dynamical evolution [12] of

the correlated state. In such evolution, one of the normal-mode frequencies, i.e., ω0

√
1 + 2λ

in the Heisenberg model, could be measurable via the corresponding breathing mode [13].

Based on exact results obtained with Heisenberg’s Hamiltonian, an optimization proce-

dure for introducing a different inter-particle interaction is formulated and analyzed quanti-

tatively from the point of view of entropic correlation measures. This analysis shows that ,

as expected,an energy-based optimization scheme could be useful only at weak inter-particle

couplings.
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