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Physical properties of graphene nanotubes may strongly depend on external fields. In a

recent paper8, the authors have studied a model of carbon nanotubes under the presence
of an external magnetic field, chosen for some symmetry properties. The model admits

an exact solution, provided that the value of a parameter, here denoted as kz , be equal
to zero. This parameter is the eigenvalue of the component of the momentum in the

direction of the nanotube axis. However, it seems that this parameter cannot be discarded

for physical reasons. The choice of non-trivial values for this parameter produces an
equation of motion for electrons in the nanotube (a Dirac-Weyl equation), which cannot
be exactly solvable. Then, we proposed some iterative approximate methods to solve this

equation and obtaining its eigenvalues. Some tests have shown that an iterative Taylor
method that is more efficient than others proposed. For kz 6= 0, we have found that,

excluding the minimal energy eigenvalue, the lowest energy values obtained for kz = 0

split into two different ones and, therefore, producing gaps in the energy spectrum.

Keywords: Graphene nanotubes; Dirac-Weyl equation; iterative methods for ODE; iter-

ative Taylor method; band structures.
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1. Introduction

In this paper, we intend to discuss some properties of carbon nanotubes of graphene
in presence of external fields. Graphene is a material formed by a honey-comb lattice
with carbon atoms at each vertex. This structure is an atom thick, so that it can
be considered as two dimensional. Graphene is a material with some outstanding
physical properties (strength, elasticity, conductivity of heat and electricity), that
make it a candidate for multiple applications.

Single wall carbon nanotubes are cylindrical structures constructed as a result
of bending graphene stripes. The radius may be orders of magnitude smaller than
the length. Since the shape is cylindrical, any point on the nanotube surface is
given by two variables, a length and an angle, the latter with appropriate periodic
boundary conditions. As has been investigated, conducting properties of nanotubes
may depend on the orientation of the atoms of the lattice in the cylinder and the
radius. Thus, in relation to these two variables the energy band spectrum may
or may not show a gap, so that nanotubes behave either as semiconductors or
as conductors1. It is also very relevant that this gap, and therefore, the conducting
properties may be altered by mechanical deformations and, which is more important
from our point of view, by the presence of external fields.

Within this context, the energy band spectrum of carbon nanotubes in the pres-
ence of external of electric and/or magnetic fields has been largely discussed in the
literature with different techniques, as for example the analysis of band structures in
nanotubes with tight-binding Hamiltonians2,3,4. In another work, the authors show
how conducting nanotubes may be turned into semiconducting, and conversely, by
the application of an external homogeneous magnetic field, parallel to the nanotube
axis5. In another paper, it has been analyzed the effect of a homogeneous transverse
field, in the low energy approximation, on the band spectrum6.

Thus, the study of the influence of external fields on carbon nanotubes becomes
a very relevant research on this field. In the present paper, we consider a mag-
netic field which is constant in the direction parallel to the axis of the nanotube,
the longitudinal direction, having an inhomogeneous transverse component, i.e.,
perpendicular to the axis. Our magnetic field has translational symmetry in one
direction, a property already considered in the scientific literature7. This transla-
tional symmetry is a realistic and rather common situation, which simplifies the
mathematical problem to be treated.

In a recent article8, Jakubský et al. have discussed an exactly solvable model
in which a transverse magnetic field interacts with the electrons in a single-wall
nanotube. After the choice of the interaction8, the exact solvability was achieved by
fixing one parameter equal to zero. However, it became clear that for other values
of the same parameter there were not exact solvability and then approximate and
numerical methods should be used. This is objective of the present paper.

First of all, let us describe the model. We consider a carbon nanotube one atom
thick, having the form of a cylinder of infinite heigh and radius ρ0. On the nanotube,



September 30, 2016 15:38 WSPC/INSTRUCTION FILE ws-ijmpc

A qualitative study of a nanotube model... 3

a magnetic field B acts with a vector potential A = Aφnφ+Aznz, where nφ and nz

are the unit vectors tangent to the circumference and to the longitudinal direction.
The component Aφ was assumed to vanish8, while Az is a function of the angle φ
alone, Az ≡ Az(φ). Along the present article, we are keeping the same assumptions,
were Aφ and Az(φ) are given data.

The behavior of a single electron on the nanotube is governed by a Dirac type
equation of the form8:

HΨ̃(z, φ) =
[
σ1

i

ρ0
∂φ − σ2

(
i∂z +

q

c~
Az(φ)

)]
Ψ̃(z, φ) = εΨ̃(z, φ) , (1)

where σ1 and σ2 are the 2×2 Pauli matrices9, q, c and ~ are the electron charge, the
speed of light in the vacuum and the Planck constant divided by 2π respectively.
In (1), ε = E/(vF~), where E is the energy and vF is the Fermi velocity in the
graphene whose value is vF ≈ 106 m/s.

Note that equation (1) is linear with indeterminates ε and Ψ̃(z, φ). Thus, we
should look for factorizable solutions on both variables z and φ. Since (1) is a Dirac
equation, it has two components. Its solution in terms of the indeterminate Ψ̃(z, φ)
is given by

Ψ̃(z, φ) = eikzz Ψ(φ) , Ψ(φ) =

ψ+(φ)

ψ−(φ)

 . (2)

The form of Ψ̃(z, φ) in (2) requires an explanation. The components Aφ and
Az of the vector potential do not depend on the z coordinate. This means that
the Dirac-Weyl interacting Hamiltonian (1) must commute with the generator of
translations in the z-direction, Pz = −i~∂z. Thus, we look for eigenfunctions of
the Hamiltonian H in (1), which are also eigenfunctions of Pz. Thus, the physical
meaning of kz is the momentum of an electron along the z direction, which is here
constant (2). Precisely, we here consider the consequences of being kz 6= 0 on the
electron allowed energy levels.

After (2), equation (1) depends on the variable φ alone so that (1) is transformed
into

(
iσ1∂φ +

(
ρ0kz −

2πρ0

Φ0
Az(φ)

)
σ2

)
Ψ(φ) = ρ0εΨ(φ) , Φ0 :=

2πc~
q

. (3)

This is an equation with two components, ψ+(φ) and ψ−(φ) as in (2). The
solvability of the model depends on the choice of the vector potential Az(φ) as well
as the value of the parameter kz. This solvability is guaranteed8 if kz = 0 and

Az(φ) = ρ0B0a(φ, k) , (4)
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where,

a(φ, k) = (1 + k′)
sn[(φ+ π/2)K/π] cn[(φ+ π/2)K/π]

dn[(φ+ π/2)K/π]
. (5)

Here, sn(x, k), cn(x, k) and dn(x, k) are the Jacobi elliptic functions and K is a
function of k given by the following elliptic integral10:

K(k) :=
∫ π

2

0

dt

1− k2 sin2 t
. (6)

The parameter k ∈ [0, 1] is called the modular parameter. Sometimes one also
uses k′ :=

√
1− k2. Note that (5) and the properties of the elliptic functions imply

that limk 7→0 a(φ, k) = cosφ.
As mentioned earlier, equation (3) is exactly solvable for the particular case

kz = 0. The given solution shows two energy bands with positive energy with one gap
between them. The first energy band is finite while the second one is unbounded8.
The purpose of this section is to analyze some aspects on the behavior of the energy
bands when kz 6= 0 using an iterative Taylor method to be described next. We
have chosen this method once we did a large number of numerical experiments
using other methods and concluded that this gave more precise results with less
operational complications.

This paper is organized as follows: In the next section, we introduce the iterative
Taylor method that we shall use in our discussion on the above model. In Section 3,
we discuss another two iterative approximate methods for the differential equations
of our interest and compare their efficiency with the iterative Taylor method. The
better efficiency of the iterative Taylor method justifies its choice to analyze the
problem under our consideration. Section 4 contains the main results concerning
the behavior of the graphene nanotube under the action of the external magnetic
field. A discussion on the convergence of the iterative Taylor method is presented
in an Appendix.

2. Iterative Taylor method

Let us consider a system of two ordinary differential equations of the following form:

y′(x) = fλ(x, y(x), z(x)) , z′(x) = gλ(x, y(x), z(x)) , (7)

where the indetermined functions y(x) and z(x) are defined on a given interval [0, p],
with p <∞. The tilde denotes derivation with respecto to x. The functions fλ and
gλ are given data and depend on the variables x, y, z and linearly on the eigenvalue
λ. As functions of x, they do not have singular points on the open interval (0, p).

Since our aim is the study of the nanotube model described in the Introduction,
we require that the solutions of (7) satisfy some boundary conditions. Thus, we
assume that
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y(0) = αy(p) , z(0) = αz(p) , α = ±1 . (8)

Solutions satisfying (8) with α = 1 or α = −1 are called periodic or anti-periodic,
respectively.

Up to our knowledge, this problem has no exact solution, so that we are looking
for approximate solutions. To this end, we propose an iterative method which is
based in the Taylor expansion11. This method is conceptually very simple and quite
easy to apply in comparison with other approximations12,13,14 including those dis-
cussed in the next section. In our opinion, this fact could make the iterative Taylor
method particularly attractive.

In this approach, we obtain segmentary approximate solutions by a Taylor ex-
pansion of the indeterminate functions (y(x) and z(x) in the case of equation (7)).
Needless to say that this requires that the indeterminate functions be differentiable
up to a given order. First of all, we choose the intervals Ik as before. On each of
the intervals Ik, let us use the Taylor theorem in order to approximate he functions
y(x) and z(x) in (7) by

ym(x) :=
m∑
j=0

1
j!
y(j)(xk) (x− xk)j , zm(x) :=

m∑
j=0

1
j!
z(j)(xk) (x− xk)j , (9)

where we have chosen x0 := 0. Here, y(j)(x) and z(j)(x) are the j-th derivatives of
the functions y(x) and z(x). Their values at the points xk are to be determined via
equation (7). For x0 := 0, we fix some initial values u := y(0) and v := z(0), so that
for the first derivative, we have

y′(0) = fλ(0, u, v) , z′(0) = gλ(0, u, v) . (10)

For the second derivative, we take into consideration that

y(2)(x) =
∂fλ
∂x

+ fλ
∂fλ
∂y

+ gλ
∂fλ
∂z

, z(2)(x) =
∂gλ
∂x

+ fλ
∂gλ
∂y

+ gλ
∂gλ
∂z

, (11)

and proceed similarly for successive derivatives. The initial conditions u and v are
not yet determined.

After (9), the approximate solution on I1 for y(x) is given by

ym(x) = u+ y′m(0)(x− 0) +
1
2
y′′(0)(x− 0)2 + · · ·+ 1

m!
y(m)
m (0)(x− 0)m . (12)

Same for z(x) with zm(0) = v. These functions defined on the first interval I1 give
the values ym(x1) and zm(x1). Following the same procedure, we use ym(x1) and
zm(x1) as initial values for the solutions (9) on I2 and so on. At the final step, we
obtain ym(xn) and zm(xn), which have to depend on u, v and λ.
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Next, we use boundary conditions (8) on the approximate solutions obtained as
above. Then, u and v have to be chosen so that the solutions obey to the required
parity. Once, u and v have been fixed, we obtain an equation solely on λ, which
determines suitable values of the eigenvalue λ.

In the particular case in which fλ and gλ as in (7) are linear on y and z, system
(8) is linear and homogeneous on u and v. Then, the determinant of the coefficient
matrix, ∆, vanishes. Under this linearity hypothesis, ∆ = 0 is just an algebraic
equation on λ. Its roots are an algebraic function of the parameters in (1). The
values for n (number of intervals) and m (degree of the polynomials (9)) are fixed
empirically in order to obtain the desired accuracy. The use of Mathematica is now
an important tool in our calculations of both Taylor coefficients and values of λ.

3. Other iterative methods

Iterative methods based in segmentary integration seem to be appropriate to ap-
proximate solutions to systems like (7). Along the present section, we introduce two
other methods, besides the iterative Taylor method. The first one is called the suc-
cessive approximation method (SAM). The second one is called the matrix method
, which is applicable to linear systems only, as is our case. Both SAM and the it-
erative Taylor method are also suitable for second order non-linear equations (or
non-linear systems of the type (7)).

Then, a discussion about the comparison of the precision between these three
methods will justify the use of the iterative Taylor method to our physical system.

3.1. The successive approximation method (SAM)

In here, we shall not intend to study equations (7) with boundary conditions (8) in
their full generality. Due to the form of the problem under our consideration, we
shall restrict ourselves to the linear case. Let us consider an equation of the form:

y′′(x) + (λa(x)− V (x))y(x) = 0 , (13)

where a(x) and V (x) are know functions. This is a particular case of (7), as we
may see by choosing z(x) := y′(x). Then, both y(x) and y′(x) should have identical
boundary conditions.

Note that λ is positive whenever a(x) and V (x) be positive. To show this, let us
multiply (13) by y(x) and then, integrate by parts the term

∫ p
0
y′′(x) y(x) dx taking

into account the boundary conditions given by (7) (with y′(x) ≡ z(x)). This gives:

λ =

∫ p
0

[y′2(x) + V (x)y2(x)] dx∫ p
0
a(x)y2(x) dx

, (14)

which proves our claim.
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Equation (14) suggest the following method of successive approximations: Take
the initial values (that may be also looked as boundary conditions) y(0) = 1 and
y′(0) = 0 and an initial value for λ, say λ0. Assume that we can solve (13) under
these conditions. We obtain a solution called y0(x). Then, use this solution in (14)
to obtain a new value for λ, that we shall denote by λ1. With this value and using
the same initial conditions, we solve (13) to obtain a solution, y1(x) and so on. The
k-th iteration can be written as:

y′′k (x) + (a(x)λk − V (x))yk(x) = 0 , yk(0) = 1 , y′k(0) = 0 ,

λk+1 =

∫ p
0

(y′2k (x) + V (x)y2
k(x)) dx∫ p

0
a(x) y2

k(x) dx
, k = 0, 1, 2, . . . , n . (15)

The number n of iterations is usually determined by the desired precision on
the evaluation of the eigenvalue λ. For instance, giving a δ > 0 such that |λk+1 −
λk| < δ for k sufficiently large. In general terms, we need numerical methods in our
calculations.

We need a procedure to determine the value λ0, which is usually named as the
seed. Let us consider the equation

y′′(x) + ω2y(x) = 0 , ω2 := 〈a(x)〉λ0 − 〈V (x)〉 ; 〈f(x)〉 =
1
p

∫ p

0

f(x) dx . (16)

Then, solve equation (16) under the given periodic boundary conditions for the
solution. This gives the admissible values of ω and therefore for λ0. For instance if
we take p = 2π, we obtain ωj = 2j with j integer. Therefore, we have the following
sequence of admissible seeds, labeled by the integer value j:

λ0,j =
4j2 + 〈V (x)〉
〈a(x)〉

. (17)

This completes our presentation of the SAM.

3.2. The Matrix method

This first method can be applied to first order linear systems only14. In general, such
a linear system has the form W ′(x) = Aλ(x)W (x), where W (x) is the column vector
of the undetermined functions, Aλ(x) a square matrix depending continuously on
the variable x and linearly on the parameter λ and the prime denotes derivative with
respect to x. System (7) can be written on this form with W (x) = (y(x), z(x))T ,
where the superscript T means transpose. Obviously, equation (3) may also be
written in the same form.

We want to determine an approximate solution of the system W ′(x) =
Aλ(x)W (x) using a segmentary procedure14. To implement it, we consider an initial
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value W (0) = (u, v)T , where u and v are real number to be assigned. Then, divide
the interval (0, p) into equally spaced segments Ik+1 = (xk, xk+1), with xk = kh,
h = p/n and k = 0, 1, 2, . . . , n. On each segment Ik we use the approximation
Aλ(x) u Aλ(xk).

Then, we proceed with the integration on I1 = (0, x1) of the system with
constant coefficients W ′(x) = Aλ(0)W (x). Its solution gives the approximate
solution on the interval I1 and the value of this solution at the point x1 is
W (x1) = exp(Aλ(0)h)W (0). Similarly, using W (x1) as initial condition, we in-
tegrate W ′(x) = Aλ(x1)W (x) on I2 = (x1, x2). Then, we repeat the process on
each of the interval Ik, using the value W (xk−1) as initial condition. In the last
step, we obtain

W (p) =
n−1∏
k=0

exp(Aλ(xk)h)W (0) . (18)

In order to obtain the eigenvalue λ, also called the characteristic value, we make
use of one of the periodic boundary conditions W (p) = αW (0), α = ±1. Then, we
arrive to the eigenvalue equation

BλW (0) = 0 , with Bλ =
n−1∏
k=0

exp(Aλ(xk)h)− αI , (19)

where I is the identity matrix.
Consider now, detBλ = 0. This is an algebraic equation of order n, whose

solutions, i.e., the values of λ can be determined by the use of, say, Mathematica. Fix
one of these values of λ; then, the eigenvalue equation in (19) gives W (0) = (u, v)T

save for a multiplicative constant, so that it is always possible to choose u = 1.
Then, one way to obtain v and therefore the initial conditionW (0) for each eigen-

value λ is the following: First of all, note that each component in (19) must be linear
on v. Then, for the first component in (19), that we denote here as (BλW (0))1 = 0,
we obtain a relation v = v(λ). Once we have determined the initial condition for a
given λ, we have obtained the approximate solution for W (x).

A second operation valid to determine the solutions of the eigenvalue problem
(19), and therefore the approximate solution to W ′(x) = Aλ(x)W (x), goes in this
way: From (BλW (0))1 = 0, derive the relation v = v(λ). We still do not know
the eigenvalues λ. To determine these λ’s, let us consider the polynomial Q(λ) :=
(BλW (0))2, where the subscript 2 denotes second component in the eigenvalue
equation (19). The roots of Q(λ) give the eigenvalues, hence the values of v and the
segmentary eigenfunction W (x).

3.2.1. Application via Riccati equation

Let us consider a Schrödinger type equation, which can be written in the form
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y′′(x) + (λ− V (x))y(x) = 0 , (20)

and let us define a new indeterminate as w(x) := y′(x)/y(x). This is the typical
substitution that transforms a Schrödinger equation into an inhomogeneous Riccati
equation:

w′(x) + w2(x) = V (x)− λ , (21)

with the boundary condition w(0) = w(p). Then, on each interval Ik = (xk, xk+1),
we approximate V (x) − λ by V (xk) − λ = Vk − λ (this defines Vk). After this
approximation, we can obtain a recursive solution (constant on each interval Ik) of
equation (21), which is given on the interval Ik+1 by

wk+1 =
√
Vk − λ

wk +
√
Vk − λ tanh(h

√
Vk − λ)√

Vk − λ+ wk tanh(h
√
Vk − λ)

, (22)

with k = 0, 1, . . . , n − 1. Taking into account the boundary condition, this shows
that

w(0)− w(p) = 0 . (23)

This gives an equation on λ whose solutions are the eigenvalues (characteristic
values). Note that the dependence in λ in equation (21) appears in w(p) only, so
that this equation depends on w(0), which should be fixed conveniently for each
particular situation investigated.

3.3. Numerical comparison of the methods

Our methods have been designed in order to apply them to calculations on graphene
nanotubes. However, we would like to know which ones are the most effective in these
calculations. Then, it seems natural to check the efficiency of these methods by using
some test. Thus, as a laboratory to compare the efficiency and numerical accuracy
of our method, we use here the Mathieu equation10. If we take as reference that
particular case, we obtain equations with periodical coefficients and one possible
approximation gives the Mathieu equation. It has the following form:

y′′(x) + (r − 2q cos(2x))y(x) = 0 . (24)

In (24), q is a given parameter, while r is the characteristic value or eigenvalue
which should be determined. There are four series of periodic solutions of (24), each
one labeled with a discrete series of characteristic values15. Here we choose even
periodic solutions on the interval [0, 2π], which are usually written in the form16,17:
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y(x, q, r2m+1(q)) =
∞∑
k=0

Ak cos(2k + 1)x , m = 0, 1, 2, . . . . (25)

If we take for instance q = 1, the three first characteristic values are10 r1 =
1.85911, r3 = 9.07837 and r5 = 25.0209. Once we have determined these three first
characteristic values, let us define as customary the percentage relative error as

εr % := 100
∣∣∣∣rnum − rexactrexact

∣∣∣∣ , (26)

where rnum is the characteristic value obtained by a numerical procedure in contrast
with its exact value rexact. We have determined the cpu time, tcpu using the software
Mathematica 9.0 and the hardware AMD Athol (tm) II X2 250 Processor with
4 GB RAM. All methods under our consideration require an initial value of the
characteristic value, which we denote as r∗. This will be the seed for the SAM
iterations or as the initial value for the calculation of the roots in the matrix method.
Since the cpu time tcpu depends on the chosen seed, in order to compare the different
cases we have taken r∗ := 1.05rexact.

Thus, the numerical values we have obtained are the following:

1.- Successive Approximation Method. In the next table, we show the results ob-
tained via SAM for the three first characteristics values and the percentage relative
error in terms of the number j of iterations:

j r1 εr %
1 1.90284 2.35
2 1.86813 0.48
3 1.85947 0.02
4 1.85911 10−5

5 1.85911 410−5

j r3 εr %
1 9.02009 0.64
2 9.07842 6.10−4

3 9.07837 5.10−7

4 9.07837 5.10−7

5 9.07837 5.10−7

j r5 εr %
1 25.4707 1.79
2 25.0463 0.10
3 25.0209 5.10−5

4 25.0209 8.10−8

5 25.0209 8.10−8

tcpu = 2.28s tcpu = 3.42 s tcpu = 5.05s

Here, cpu times grow due to the increase in the oscillations on y, which affects
to the numerical evaluation of integrations.

2.- Matrix method (MM). Using this method, we show the results obtained,
when we divide the interval (0, 2π) into 10 and 12 subintervals, respectively (here
and also in the following tables, n denotes the number of intervals):

k rk εr %
1 1.81017 2.6
3 9.0651 0.14
5 25.0597 0.15

k rk εr %
1 1.82598 1.8
3 9.0707 9.10−2

5 25.207 0.8
tcpu = 15.9 s n = 10 tcpu = 76.1 s n = 12
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Now the tcpu are too high due to the calculation of the roots. In order to improve
these results, we rewrite the Mathieu equation in the Riccati form. Since we are
looking for evan solutions, we take w(0) = 1. Now we obtain a much better result
as can be seen in the next table:

k rk εr %

1 2.23995 20.5
3 8.92347 1.70
5 24.8458 0.70

k rk εr %

1 1.85539 0.20
3 9.07428 5.10−2

5 25.0184 10−3

k rk εr %

1 1.8584 4.10−2

3 9.07768 7.10−3

5 25.0205 1.10−3

tcpu = 0.0654 s, n = 10 tcpu = 1.64 s, n = 50 tcpu = 7.21 s, n = 100

3.- Finally, we show the results obtained by the iterative Taylor method. Let us
start with second order:

k rk εr %

1 1.75409 5.64
3 3.19332 65.
5 0.198295 99.

k rk εr %

1 1.84606 0.70
3 8.679 4.5
5 22.5466 10.

k rk εr %

1 1.85575 0.18
3 8.96382 1.2
5 24.4015 2.5

tcpu = 0.17 s n = 10 tcpu = 1.28 s n = 50 tcpu = 4.64 s n = 100

Note that for second order, times tcpu are reasonable. However, we do not con-
sider the accuracy as acceptable and therefore, we make the same numerical analysis
using fourth order Taylor. We obtain:

k rk εr %

1 1.85725 10−1

3 8.6328 4.9
5 20.4753 18.

k rk εr %

1 1.85917 3.10−3

3 9.08136 3.10−2

5 25.0932 0.29

k rk εr %

1 1.85911 2.10−4

3 9.07857 2.10−3

5 25.0275 3.10−2

tcpu = 0.21 s n = 10 tcpu = 2.82 s n = 50 tcpu = 12.5 s n = 100

From the precedent tables, we observe the following:
i.) The matrix method for Riccati has the same level of accuracy like the Taylor

method with n = 100.
ii.) Contrarily as it happens with the Taylor method, the matrix method in

Riccati reduces the error when computing larger eigenvalues.
iii.) The SAM is more efficient for the Mathieu equation: we just need four

iterations to obtain the eigenvalues r1, r3 and r5 with better accuracy than in the
other case and with tcpu u 10 seconds.

Finally, in order to close our discussion, we perform the same calculations using
the classical finite difference method, which approaches the second derivative of
y(x) evaluated at xk by its discrete derivative h−2(yk−1 − 2yk + yk+1):
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k rk εr %

1 1.74669 6.1
3 9.89793 9.1
5 12.6158 49.6.

k rk εr %

1 1.85155 .41
3 8.94667 1.5
5 21.5864 13.8

k rk εr %

1 1.85618 0.16
3 9.02127 0.63
5 24.826 0.78

tcpu < 0.1 s, n = 10 tcpu = 0.17 s, n = 50 tcpu = 0.44 s, n = 100

k rk εr %

1 1.85889 1.10−2

3 9.09425 0.18
5 25.0052 6.10−2

tcpu = 32.6 s, n = 1000.

One should note that in this case, we need much higher values of n in order to
obtain a similar precision than for the previous methods, along with a non desirable
significative increase of cpu times.

The conclusion is that the iterative Taylor method looks like more efficient than
the others here proposed for the type of equation we want to solve.

4. Discussion on the model of graphene nanotubes.

Let us go back to the model as described in the Introduction. First of all, the value
of k in (5) varies from 0 to 1 and is fixed. In order to make the calculations with
Mathematica easier, let us use instead the parameter m defined as m := k2. Observe
that in (5), this produces (k′)2 = 1−m. It is also convenient to define the variable

x :=
(φ+ π/2)K(m)

π
, (27)

where m is fixed so that x depends solely on the angle φ. Also, for constant m
the Jacobi functions depend only on the variable x, but in any case, we shall write
sn(x,m), cn(x,m) and dn(x,m) for these Jacobi functions.

Then, we can write the two components matrix equation (3) as

HΨ(x) =
πρ0

K(m)
εΨ(x) , Ψ(x) =

ϕ+(x)

ϕ−(x)

 , (28)

where H has the following form:

H =

 0 iA+

−iA− 0

 , with A± = ±∂x +W (x) . (29)

Here, ∂x denotes derivative with respect to x and
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W (x) = − πρ0

K(m)
kz +W0(x) , W0(x) = 2m

sn(x,m) cn(x,m)
dn(x,m)

. (30)

It is convenient to multiply (28) by H. It produces the effect of decoupling the
system. This operation transforms (28) into

H2Ψ(x) =

A+A− 0

0 A−A+

ϕ+(x)

ϕ−(x)

 =
(

πρ0

K(m)

)2

ε2 Ψ(x) . (31)

Next, let us define

H+ := A+A− , H− := A−A+ , (32)

so that

H2 =

H+ 0

0 H−

 , H± = −∂2
x + V±(x) (33)

with

V±(x) := W 2(x)±W ′(x) . (34)

At this point, it is in order to comment that the chosen potential a(φ, k) given
in (5) is nothing else than the superpotential for the potential V (φ, k) = sn2(φ, k),
which is, save for a constant, the well known Lamé potential18.

From (31) we readily obtain two second order separate equations, one for ϕ+(x)
and the other for ϕ−(x). These are eigenvalue equations for H+ and H−, respec-
tively, which are equally valid to obtain approximate values for the eigenvalues ε,
which is the objective of the present analysis. To this end, let us use the eigenvalue
equation for H−:

∂2
xϕ−(x) +

((
πρ0

K(m)

)2

ε2 − V−(x)

)
ϕ−(x) = 0 . (35)

We are studying properties of nanotubes in terms of the angle φ. Therefore,
functions depending on φ have to show periodicity properties in terms of this angle.
It has been proven that these solutions should be either periodic or anti-periodic 8.
This periodicity properties have to be inherited by the functions ϕ±(x). This comes
from (28) and (29), which imply that A−ϕ(x) = sϕ+(x) and A+ϕ+(x) = −sϕ−(x)
with s = iπρ0ε/K(m). From the former of these equations and the boundary condi-
tions for ϕ−(x), one gets ϕ+(0) = ±ϕ+(P ). From the second and A+ = ∂x +W (x)
and the previous boundary conditions, we get ϕ′+(0) = ±ϕ′+(P ). After (27), the
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period is P = 2K(m). In particular, solutions of (35) satisfy either periodicity or
anti-periodicity properties:

ϕ−(x) = αϕ−(x+ P ) , ϕ′−(x) = αϕ′−(x+ P ) , (36)

where α = 1 and α = −1, respectively.
Changes of scale usually help in simplifying calculations. In particular, we pro-

pose the following:

x/P −→ x , 2πρ0ε −→ ε , P 2V± −→ V± . (37)

Under this change of scale along a unit system such that p = 1 and πρ0 = 1,
equation (35) transforms into

∂2
xϕ−(x) + (ε2 − V−(Px))ϕ−(x) = 0 . (38)

With these new units, we can write V−(x) as:

V−(x) = 4kz

(
kz −m

sn(2K(m)x,m) cn(2K(m)x,m)
dn(2K(m)x,m)

)
+4mK2(m)(2sn2(2K(m)x,m)− 1) . (39)

Note that for kz = 0, (39) is essentially the Lamé potential. A Schrödinger
equation of the type −d2φ(x)/dx2 + V (x)φ(x) = ε2φ(x), where V (x) is the Lamé
potential has analytic solution in terms of the elliptic Jacobi functions18.

Let us assume that m << 1, for simplicity. At first order, the potential V−(x)
looks like

V−(x) = 2kz(kz − 2mπ sin(2πx))−mπ2 cos(2πx) , (40)

so that (38) becomes a Hill equation. Furthermore, if we choose kz = 0, we obtain
the Mathieu equation. In Figure 1, we compare the exact and approximate potentials
for small values of m and kz = 1. We see that in the range of chosen values m ≤ 0.20,
both exact and approximate potentials are quite similar.

4.1. An interesting approximation

Before using the iterative Taylor method of Section 2 for a qualitative study of the
case kz 6= 0, let us introduce another simple approximation. To this end, let us
consider the following equation:

y′′(x) + (a− f(x))y(x) = 0 , (41)
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Fig. 1. Comparison between the exact potential (39) and the approximate (40), whenm << 1 and

kz = 1. The green and blue color correspond to the exact and approximate potentials respectively.

where a is a fixed real number, α ≤ x ≤ β and f(x) continuous on (α, β). Equation
(41) can be approximated as

ζ ′′(x) + (a− 〈f(x)〉)ζ(x) = 0 , (42)

where the meaning of the average 〈f(x)〉 is

〈f(x)〉 :=
1

β − α

∫ β

α

f(x) dx . (43)

In order to analyze the error in the approximation, let us consider the number
x∗ such that f(x∗) = 〈f(x)〉. We know that x∗ ∈ (α, β) due to the mean value
theorem. Then, let us find the Taylor expansion of the solutions of (41) and (42) on
a neighborhood of x∗. They are, respectively:

y(x) = y(x∗) + y′(x∗)(x− x∗)− 1
2

(a− f(x∗))y(x∗)(x− x∗)2

−1
6

(a− f(x∗))y(x∗)(x− x∗)3 − 1
6
f ′(x∗)(x− x∗)3 + . . . (44)

and



September 30, 2016 15:38 WSPC/INSTRUCTION FILE ws-ijmpc

16 M. Gadella & L.P. Lara & J. Negro

z(x) = z(x∗) + z′(x∗)(x− x∗)− 1
2

(a− 〈f(x)〉)z(x∗)(x− x∗)2

−1
6

(a− 〈f(x)〉)z(x∗)(x− x∗)3 + . . . . (45)

We see that (44) and (45) coincide up to second order. If we denote by h the
minimal radius of convergence of both series, we have that h < β − α (note that in
the case of the graphene nanotubes we have chosen β − α = 1). Then, the error in
the approximation is of the order of h3.

Thus, equation (38) can be approximated by

∂2
xϕapp(x) + (ε2 − 〈V−(Px)〉)ϕapp(x) = 0 . (46)

The function ϕapp(x) should approximate ϕ−(x). Then, the solution of (46) with
either periodic and anti periodic boundary conditions on ϕapp(x) is trivial. When
the boundary conditions are periodic, the energy values (eigenvalues) are

ε2n u (2n)2π2 + 〈V−(Px)〉 , n = 1, 2, 3, . . . (47)

When the boundary conditions are anti periodic, we get the following energy
values:

ε2n u (2n+ 1)2π2 + 〈V−(Px)〉 , n = 1, 2, 3, . . . (48)

It is necessary to recall that in (38) the values of ε were rescaled. In order to
obtain the true values we have to go back to the original scale. This approximation,
although simple is a good one as we shall see by comparison with the results of the
next subsection.

4.2. Qualitative analysis based on the iterative Taylor method

In this subsection, we introduce the results obtained after the use of the iterative
Taylor method. Let us go back to equation (38). This, along boundary conditions,
pose an eigenvalue problem for which the solutions give a discrete set of eigenvalues
ε2. These eigenvalues are real and are customarily ordered as follows:

ε20 < ε21 ≤ ε21′ < ε22 ≤ ε22′ < ε23 ≤ ε23′ < ε24 . . . (49)

The eigenvalues with even subindices,

ε20 < ε22 ≤ ε22′ < ε24, , etc , (50)
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correspond to eigenvalues with periodic eigenfunctions. The eigenvalues with odd
subindices,

ε21 < ε23 ≤ ε23′ < ε25, , etc , (51)

correspond to anti-periodic solutions. The forbidden energy bands are:

(ε21, ε
2
1′), (ε22, ε

2
2′) , etc , (52)

so that when ε2k = ε2k′ the corresponding forbidden band disappears. On the other
hand, the permitted bands are:

[ε20, ε
2
1] , [ε21′ , ε22] , etc . (53)

For the Lamé equation (kz = 0), we know the following eigenvalues:

ε20 = 0 , ε21 = 1−m, ε21′ = 1 . (54)

Their respective eigenfunctions are

ψ0(x) = dnx , ψ1(x) = cn x , ψ1′(x) = sn x , (55)

which shows that there exist two allowed and one forbidden bands8. When kz 6= 0
there is no analytic solutions and therefore allowed and forbidden bands have to
be determined by approximate methods such as the iterative Taylor or the simple
method introduced in the previous subsection.

Let us go back to equation (38). When we used the iterative Taylor method, we
have chosen a number of integration intervals n = 100 for the Lamé equation. As
we noted earlier, this equation has three exact eigenvalues to compare with. For the
cases in which no exact solution is available, we have compared results with n = 100
to results with n = 200. We have obtained a relative variation of order less than
5 · 10−2 %.

In Figure 2, we split ε21 and ε21′ for increasing values of m, starting from m = 0.
Two curves that have smaller energy at m = 0 correspond to kz = 0, i.e., the
situation for which the exact solution is known. Here, the maximal error between
the exact and numerical values is of the order of 5 · 10−5 %. For the other two with
higher energy at m = 0, we have chosen kz = 1, so that no exact solution is known.

Figure 3 represents the variation of the numerical values of ε21 and ε21′ with |kz|,
for a fixed value of m that we have fixed here as m = 0.5.

Going on with the same procedure, our numerical results show that the splitting
of the levels other than the lower one is really small. To complete our analysis, let us
go back to equations (47) and (48). Within the range 0 < |kz| < 3 and 0 < m < 0.7,
our results show a maximal relative difference, |100(ε2num − ε2approx)/ε2num|, where
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Fig. 2. Split between ε21 and ε2
1′ for values m > 0. The two lower lines corresponds to kz = 0 and

the two upper to kz = 1.

Fig. 3. Dependence of ε21 and ε2
1′ with |kz | for m = 0.5 fixed.

ε2num and ε2approx are the values obtained numerically and from the approximations
given by formulas (47) and (48), respectively, of the order less than 0.2 %. This
shows again a quite small splitting. Note this naive approximation is not really
good for the ground level. In fact, (ε21 + ε21′)/2 can be approximated by ε2approx with
an error smaller than 1%.

Finally, we have noted that the spectrum is very little sensitive to variations on
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Fig. 4. Dependence of ε23 and ε2
3′ with |kz | for m = 0.5 fixed.

m and kz.

5. Concluding remarks

The structure of the energy bands and therefore, the physical properties of graphene
nanotubes may depend on their interaction with external fields. In this paper, we
complete the results of a previous work in which a single wall graphene nanotube
was exposed to a magnetic field, which is constant in the direction of the nanotube
axis and inhomogeneous in the direction perpendicular to this axis.

The explicit form of the magnetic field was chosen under two criteria: to have
certain symmetry properties and to be exactly solvable. However, exact solvability
was achieved if a parameter, kz, which appears naturally in the formalism was taken
equal to zero. Here, solvability means that the Dirac equation obtained with the
given potential vector gives a analytic solution with either periodic or anti periodic
boundary conditions.

However, there is no physics reason why this parameter (the eigenvalue of the
momentum operator along the direction of the nanotube axis) should be zero. Then,
it is interesting to study what the situation is if we give values to kz 6= 0. Since
the Dirac equation is an eigenvalue equation, our goal was to check whether the
introduction of kz 6= 0 produces a splitting of these eigenvalues and therefore, the
presence of energy bands which did not appear for kz = 0.

Then the Dirac equation ceases to be exactly solvable and we need to use approx-
imate methods for solution in order to obtain qualitative results. Since approximate
iterative methods looked like suitable for this kind of problems, we have tested three
of them in order to choose the most efficient one. The test was done on the Math-
ieu equation, in which we may compare approximate and exact solutions. These
tests include numerical comparisons. Our conclusion was that the iterative Taylor
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method was the most efficient.
Our conclusion is that there is an effective split of eigenvalues other than the

minimum and therefore, the appearance of permitted and forbidden energy bands.
The forbidden energy bands corresponds to energies in between the energy split.
For instance, the second energy eigenvalue splits for kz 6= 0 in ε1 and ε1′ . Then, the
energy gap lies in the interval (ε1, ε1′).

Our results show a clear split for the second energy eigenvalue, a small split for
the third and a quite small split for the fourth that can be detected only with high
precision. We can only conjecture the split of higher eigenvalues after our numerical
tests.

One of the objectives of a future work may be to develop more efficient algorithms
and methods to analyze higher eigenvalues as well as to apply our methods to other
physical systems.
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Appendix A. On the problem of the uniform convergence for the
iterative Taylor method

The iterative Taylor method consists in provide segmentary approximate solutions
as in (9). We want to discuss when we can guarantee that these segmentary approx-
imate solutions converge uniformly to the exact solution for equations of the form
y′(x) = f(x, y(x)), where f(x, y) satisfy a Lipschitz condition with respect to the
y variable. Due to the form of system (7), this should be sufficient in the present
case. This discussion is rather tedious and long although straightforward, so that
we have it considered convenient to give it in an Appendix.

Assume that we divide the interval of integration on n intervals. Then, the
approximate segmentary solution is (see (9))

Tn(x) := {tn,k(x) , k = 1, 2, . . . , n} , (A.1)

where tn,k(x) is the polynomial for the interval Ik. Since we want that Tn(x) be an
approximation for the solution of y′(x) = f(x, y(x)), we should have

T ′n(x) = f(x, Tn(x)) + ηn(x) ,

ηn(x) = T ′n(x)− f(x, Tn(x)) , (A.2)

where ηn(x) appears due to the discrepancy between the exact solution and the
approximate solution Tn(x). An obvious integration on (A.2) gives
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Tn(x) = y0 +
∫ x

x0

f(t, Tn(t)) dt+
∫ x

x0

ηn(t) dt , (A.3)

where y0 is some initial condition. The point x is arbitrary in the integration interval,
x ∈ (x0, p], p = xn, so that it belongs to one of the subintervals, say x ∈ IK . After
(A.1) and (A.2), we can write

∫ x

x0

ηn(t) dt =
∫ x

x0

[T ′n(x)− f(t, Tn(t))] dt

=
K−1∑
k=1

∫ xk+1

xk

[t′n,k+1(t)− f(t, tn,k+1(t))] dt

+
∫ x

K−1

[t′n,k+1(t)− f(t, tn,k+1(t))] dt . (A.4)

Then, taking (9) into account, we arrive to the following expression:

∫ x

x0

ηn(t) dt =
K−1∑
k=1

[
hn an,k+1 −

∫ xk+1

k

f(t, tn,k+1(t)) dt
]

+ LT , (A.5)

where LT is the last term in (A.4). Here,

an,k+1 =
m∑
j=1

1
j!
y(j)(xk+1)hj−1

n (A.6)

and hn is the length of each subinterval. Observe that the last term in (A.4) is
indeed similar to the other with the only difference that hn should be replaced by
a number smaller or equal. Now after (A.3), we have that

|Tn+m(x)− Tn(x)| ≤
∫ x

x0

|f(t, Tn+m(t))− f(t, Tn(t))| dt+ εnm , (A.7)

with

εn,m =
∣∣∣∣∫ x

x0

[ηn+m(t)− ηn(t)] dt
∣∣∣∣ . (A.8)

Let us use the Lipschitz condition in (A.7). This gives:

|Tn+m(x)− Tn(x)| ≤ R
∫ x

x0

|Tn+m(t)− Tn(t)| dt+ εnm , (A.9)

where R is a constant. Each of the functions in the sequence {Tn(x)} is bounded,
so that after (A.9) we obtain
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sup
x∈[x0,p]

|Tn+m(x)− Tn(x)| ≤ max εn,m
|1−R(x− x0)|

. (A.10)

It is important to mention that Tn+m(x) and Tn(x) correspond to two different
partitions of the integration interval. In these two different cases the partition has
n+m and n subintervals, respectively. We shall denote by Pn to the partition with
n intervals. Without loss of generality, we may assume that n = 2p, where p is a
natural number, so that Pm with m > n is always a refinement of Pn.

In order to study the term εn+m, let us go back to (A.5) and consider

∫ x

x0

[ηn+m(t)− ηn(t)] dt =
K(m+n)−1∑

k=1

hn+m an+m,k −
K(m)−1∑
k=1

hn an,k

+
K(m)−1∑
k=1

∫ xk+1

xk

f(t, tn,k+1(t)) dt−
K(m+n)−1∑

k=1

∫ xk+1

xk

f(t, tn+m,k+1(t)) dt

+LT(n+m) − LT(n) . (A.11)

In (A.11), we have used the symbol K(p) in the upper limit of the sum. This
means that we have used the partition Pp. The meaning of the two last terms should
be obvious. Since we have chosen Pn+m to be a refinement of the partition Pn, we
may stand on the former. Then, using the definition (A.8), we have the following
inequality

max εn,m ≤

K(m+n)∑
k=1

max |an+m,k − an,k|

 hn+m

+
K(m+n)∑
k=1

∫ xk+1

xk

|f(t, tn,k+1(t))− f(t, tn+m,k+1(t))| dt . (A.12)

In (A.12) we have included the two last terms in (A.11). Due to their definition,
the coefficients ap,k are uniformly bounded for any partition Pp. The polynomials
tn,k(t) and tn+m,k(t) have the same degree so that on each of the subintervals In+m,
one has

|tn,k(t)− tn+m,k(t)| ≤ αn,m,k hn+m , (A.13)

with αn,m,k 7−→ 0 when n,m 7−→ ∞. In addition, the functions Tn(x) and Tn+m(x)
are continuous on the same finite interval, so that the αn,m,k are uniformly bounded
by some α. Using the Lipschitz condition for the function f(x, y) with constant R
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and (A.13) and taking into account that hr = p/r, the term with the integral in
(A.12) is bounded by

K(m+n)∑
k=1

∫ xk+1

xk

|f(t, tn,k+1(t))− f(t, tn+m,k+1(t))| dt

≤
K(m+n)∑
k=1

αRh2
n+m = α (n+m)Rh2

n+m = αR
p2

n+m
7−→ 0 , (A.14)

as n+m 7−→ ∞. Thus, the second term in (A.12) goes to zero.
Concerning the first term in (A.12). The derivatives y(j)(x), j = 1, 2, . . . , s, are

all bounded on the integration interval, because of their continuity on a compact
interval. Then taking into account the explicit form of the an,k given in (A.6), it is
not difficult to show that this first term in (A.12) also goes to zero as n+m 7−→ ∞.
In consequence,

lim
n+m 7→∞

max εn,m = 0 . (A.15)

Let us go back to (A.10) and note that this inequality does not guarantee the
uniform convergence of the sequence Tn(x) if there exists an x ∈ [x0, p] such that
the denominator in the right hand side of (A.10) vanishes. However, uniform con-
vergence is assured if the interval width is smaller than R−1, since in this case no
such an x may exist.

If the width of the interval [x0, p] were larger than R−1, in order to ensure
uniform convergence, let us choose p1 :< x0+1/R and apply the procedure described
on Section 2 to this interval. Then, repeat the method on the interval [p1, p2] with
p2 < p1 + 1/R and so on.

We have shown that the sequence of approximate solutions {Tn(x)} converges
uniformly to a function T (x). Then, using (A.14), the properties of the functions
involved in this relation and the Lebesgue theorem, we conclude that

T (x) = y0 +
∫ x

x0

f(t, T (t)) dt , (A.16)

so that T (x) is the solution of y′(x) = f(x, y(x)) with initial value y(x0) = y0.
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