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Abstract

The aim of this paper is to study the degeneracy of the energy spectrum in a
nanotube under a transverse magnetic field. The massless Dirac-Weyl equation has
been used to describe the low energy states of this system. The particular case of a
singular magnetic field approximated by Dirac delta distributions is considered. It is
shown that, under general symmetry conditions, there is a degeneracy corresponding to
periodic solutions with a null axial momentum kz = 0. Besides, there may be present
a kind of sporadic degeneracy for non-vanishing values of kz , which are explicitly
computed in the present example. The proof of these properties is obtained by means
of the supersymmetric structure of the Dirac-Weyl Hamiltonian.

Keywords: Massless Dirac-Weyl equation, nanotube, spectrum degeneracy, super-
symmetry.

1 Introduction

Single walled carbon nanotubes (CN) can be considered as a sheet of graphene rolled up
to form a cylinder. Depending on the angle of the graphene lattice and the cylinder axis,
the nanotube will inherit a metallic or semiconducting character [1–4].

The application of magnetic fields to a nanotube can have two kinds of effects. If the
field is longitudinal (in the direction of the nanotube axis) it may interchange metallic and
semiconducting behaviors by opening (or reducing) a gap in the band center. On the other
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hand, transverse magnetic fields in general will increase the metallic character by reducing
the initial gap [4–9].

The description of the low energy states of nanotubes, near each of the two Fermi points,
can be done in the continuous limit of a tight binding model by means of the massless Dirac-
Weyl equation, provided the circumference length L = 2πρ0 is much larger than the C-C
distance a [4]. In the presence of a magnetic field of intensity B, the interaction can be
described by the minimal coupling rule in the Dirac equation if ~c

qB
is much larger than

aρ0, in order to avoid lattice effects [7]. The different types of nanotubes can be taken into
account in the continuum limit by means of certain quasi-periodic conditions [4].

In this paper we will make use of this picture of low energy states to study the interaction
of a nanotube with a singular transverse magnetic field that can be approximated by a
Dirac delta. We want to address the question of the degeneracy of the energy spectrum.
There are many references dealing with the electronic properties of nanotubes in transverse
magnetic fields, but in general the problem of degeneracy has not been fully explained. For
instance, in [7] it is given a discussion on this point in order to show a quantum Hall effect
in nanotubes, but this is done on a rather qualitative ground. We want to deduce the
degeneracy properties just from the symmetries of the periodic Dirac-Weyl equation. The
natural way to get a satisfactory answer to this problem is by making use of supersymmetry
arguments. Each component of the Dirac spinor satisfies an effective Schrödinger equation
of a supersymmetric couple [10]. The connection of the symmetry properties of these two
effective equations will lead us to a global symmetry explaining the degeneracy.

In this work we have chosen a Dirac delta singular magnetic field to illustrate this
problem. There are several reasons for this choice: (i) Although not realistic, this is a very
simple case where all the possible types of degeneracy can be explained in a clear way. (ii)
This potential is quite different from that of a constant background magnetic field, which
is better known in the literature [4,7,9], so that it will constitute a good test to check some
known properties. In any case, the same symmetry concepts can also be applied to any
other magnetic field in order to find its degeneracy. The paper is organized as follows. Sec-
tion II introduces the notation to describe the interaction of quasi-particles in nanotubes
under a generic transverse magnetic field. In particular, the supersymmetric form of the
Dirac-Weyl Hamiltonian is shown as well as the two effective partner Schrödinger Hamil-
tonians [10]. Next, in Section III this formalism is applied to a transverse singular Dirac
delta field. The spectrum and the form of the current in the axis direction will be obtained.
The degeneracy is studied in Section IV. There are two types of degeneracy: (i) the corre-
sponding to periodic eigenfunctions for quasi-particles with null axial momentum, and (ii)
a kind of ‘sporadic’ degeneracy that can be present in some special cases of non-vanishing
axial momentum. The last section is devoted to some remarks and conclusions.
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2 Nanotube in external magnetic fields

We will start with the general formalism to describe the quasi-particles of a nanotube
in a magnetic field at low energies. In principle, the magnetic field at each point of the
nanotube surface can be decomposed into transverse B⊥ (perpendicular to the surface)
and parallel B‖ (tangent to the surface) components. As the Lorentz force produced
by the magnetic field is perpendicular to the motion of the charged particles, only the
perpendicular component is effective in this situation. The other components, specially
the longitudinal component along the nanotube axis, may have another kind of influence
that will not be considered here [5, 6, 9, 11].

Let us take cylindrical coordinates (ρ, φ, z), where the z-axis is along the nanotube axis.
Since the magnetic field B produced by the vector potential A = Aρnρ +Aφnφ +Aznz is

B = ∇×A =

(

1

ρ
∂φAz − ∂zAφ

)

nρ + (∂zAρ − ∂ρAz)nφ +

(

∂ρAφ − ∂φAρ +
Aφ

ρ

)

nz (1)

then, the effective magnetic field perpendicular to the nanotube surface at ρ = ρ0 will be
given by

B⊥ =

(

1

ρ0
∂φAz − ∂zAφ

)

nρ . (2)

This effective field can be described by a vector potential tangent to the surface of the
nanotube,

A = Aφ(φ, z)nφ +Az(φ, z)nz . (3)

In the low energy limit, a quasi-particle interacting with the effective magnetic field B⊥ is
described by the massless Dirac-Weyl equation [4, 11] via the minimal coupling with the
vector potential (3),

[

−σ2
(

i∂z +
q

c ~
Az

)

+ σ1

(

i

ρ0
∂φ +

q

c ~
Aφ

)]

Ψ̂(z, φ) = ǫ Ψ̂(z, φ), (4)

where ǫ = E
vF ~

. Now, the wave functions Ψ̂(z, φ) that we are looking for are subject to the
boundary condition

Ψ̂(z, 2π) = ei 2πδΨ̂(z, 0), (5)

where −1/2 < δ ≤ 1/2 is the phase shift after a period of the angular variable. Since the
values δ and −δ are related by a complex conjugation in (5), hereafter we will restrict to
positive values 0 ≤ δ ≤ 1/2. The concrete value of δ to be considered will depend on the
properties of the nanotube: it is related to the particular way a piece of planar graphene
is rolled in order to construct the nanotube or to other longitudinal magnetic fields [4].

Here, we will deal with the case where B⊥ does not depend on z but it is a function of
φ. This situation can be described by the potential

(Aφ = 0, Az = Az(φ)) =⇒ B⊥(φ) =
1

ρ0
∂φAz(φ)nρ . (6)
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Due to the symmetry under translation in the z-direction, the stationary equation (4) can
be separated by taking the wave function in the form

Ψ̂(z, φ) = eikzzΨ(φ), Ψ(φ) =

(

ψ1(φ)
ψ2(φ)

)

. (7)

Thus, we get a one dimensional stationary equation depending on the constant momentum
pz = ~kz of the particle in the z-direction,

[

iσ1∂φ +
(

ρ0kz −
ρ0q

c~
Az(φ)

)

σ2

]

Ψ(φ) = ρ0 ǫΨ(φ), (8)

together with the boundary condition

Ψ(φ+ 2π) = ei2πδΨ(φ), 0 ≤ δ ≤ 1/2 . (9)

Equation (8) represents two coupled, first-order differential equations for the spin-up and
down components ψ1(φ) and ψ2(φ), respectively. Let us introduce the operators

A
† = ∂φ +W (φ), A = −∂φ +W (φ), (10)

where
W (φ) = −ρ0kz +

ρ0q

c~
Az(φ). (11)

In terms of these operators, equation (8) can be cast in a more appealing form:

H Ψ(φ) =

(

0 iA†

−iA 0

)

Ψ(φ) = ǫ̃Ψ(φ), ǫ̃ = ρ0ǫ . (12)

This equation can be decoupled by applying H to the left, so that we obtain a diagonal
second order Hamiltonian H2,

H2Ψ(φ) ≡
(

H1 0
0 H2

)

Ψ(φ) =

(

A
†
A 0
0 AA

†

)

Ψ(φ) = ǫ̃2 Ψ(φ) (13)

where

H1 ≡ A
†
A = −∂2φ +W 2(φ) +

dW (φ)

dφ
, H2 ≡ AA

† = −∂2φ +W 2(φ)− dW (φ)

dφ
. (14)

Therefore, the upper (ψ1) and lower (ψ2) components of Ψ(φ) must be eigenfunctions of
the effective Schrödinger Hamiltonians H1 and H2, respectively, with the same effective
energy ǫ̃ = ρ20ǫ

2. If the eigenvalue is nonzero, according to (12) these components are
related by means of the operators (10),

ψ1 =
i

ǫ̃
A

†ψ2, ψ2 = − i
ǫ̃
Aψ1. (15)
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The zero modes Ψ0 = (ψ1
0 , ψ

2
0)

T of the Hamiltonian H can be found by solving the following
equations

A
†ψ2

0 = 0, Aψ1
0 = 0. (16)

Only when the solutions to these 1st order equations satisfy the boundary conditions, they
give rise, respectively, to the zero energy solutions

Ψ↑
0
=

(

ψ1
0

0

)

, Ψ↓
0
=

(

0
ψ2
0

)

. (17)

In the frame of supersymmetric quantum mechanics, we say that the Hamiltonians H1

and H2 are supersymmetric partners, the operators A,A† are intertwining operators and
the function W (φ) is the superpotential. The spectral problem for the matrix Hamiltonian
(12) is equivalent to that of the common spectrum of the scalar Hamiltonians H1 and H2

given in (14). The effective potentials of these scalar Hamiltonians are given, according to
(14), by

V1(φ) =W 2(φ) +
dW (φ)

dφ
, V2(φ) =W 2(φ)− dW (φ)

dφ
. (18)

These scalar potentials will help us to interpret the behavior of the components ψ1(φ) and
ψ2(φ) in the original matrix equation (12). The boundary conditions on the eigenfunctions
ψ1,2(φ) of the scalar Hamiltonians are the same as in (9),

ψ1,2(φ+ 2π) = ei2πδψ1,2(φ), 0 ≤ δ ≤ 1/2. (19)

3 Transverse magnetic δ-fields

We will consider a magnetic field that enters in the nanotube near the point φ = π/2 with
a singular intensity given in terms of the Dirac delta distribution, and leaves the nanotube
at the opposite point φ = −π/2 with the same intensity. This field is described by the
magnetic potential

Az(φ) = A0 [H(φ+ π/2) +H(−φ+ π/2) − 3/2] , −π ≤ φ ≤ π , (20)

where H(φ) is the Heaviside function (see Fig. 1). Then, according to (6), the magnetic
field has the expression

B⊥ =
A0

ρ0

(

δ(φ + π/2)− δ(φ − π/2)
)

nρ ≡ B(φ)nρ . (21)

There are two important aspects of the potential function to be remarked.

(i) As φ is an angular variable, the potential Az(φ) in (20) can be extended to a periodic
real function with period T = 2π.
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Figure 1: The potential Az(φ) given in (20) for A0 = 1.

(ii) The integral of Az(φ) along a period vanishes:
∫

2π

0
Az(φ) dφ = 0 .

The next step is replacing this magnetic potential in the eigenvalue equation (26) for
the effective Hamiltonians H1 and H2 with effective potentials (18). It will be useful to
introduce the following constants

α = ρ0 kz, β =
ρ0 q

c~
(22)

so that
W (φ) = −α+ β Az(φ) . (23)

Notice that, once fixed the radius of the nanotube, the parameter α is proportional to the
momentum kz in the z–direction. Then, the explicit form of the effective potentials is (see
Fig. 2)

V1(φ) = α2 +
β2A2

0

4
− 2βαAz(φ) + βρ0B(φ) = V0(φ) + βρ0B(φ) , (24)

V2(φ) = α2 +
β2A2

0

4
− 2βαAz(φ)− βρ0B(φ) = V0(φ)− βρ0B(φ) . (25)

Thus, the effective potentials include two terms:

(i) A common term, V0(φ), with a part proportional to the magnetic potential, −2βαAz(φ),

plus a constant M ≡ α2 +
β2A2

0

4
(depending on kz and ρ0).

(ii) A second term proportional to the magnetic field intensity: ±βρ0B(φ) (with plus
sign for V1 and minus sign for V2). This term contains the Dirac delta singularities.

In order to solve the spectral problem, we can choose just one of the Hamiltonians H1

or H2, since the solutions for the other one are found through the relations (15) or (16).
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Figure 2: Effective potentials V2(φ) (left) and V1(φ) (right) for α = 2, β = 1, A0 = 1. The δ
singularities are represented by arrows at the discontinuity points.

Henceforth, we will take H2 and write down its eigenvalue equation:

H2 ψ(φ) = ǫ̃2 ψ(φ), ψ(φ) ≡ ψ2(φ) . (26)

This equation can be divided in the three regions of the interval [−π, π] where the finite
potential V0 takes constant values (see Fig. 2):

V0(φ) =















M +N, −π < φ < −π/2 (I)

M −N, −π/2 < φ < π/2 (II)

M +N, π/2 < φ < π (III)

M = α2 +
β2A2

0

4
, N = βαA0 .

(27)
If α → 0, then N → 0, so that in this case V0(φ) will remain constant and the only
significant contribution to the effective potential will come from the singular magnetic
field.

The solutions corresponding to a fixed effective energy ǫ̃2 consist of the free Schrödinger
solutions in the three regions subject to appropriate matching and periodic conditions,

[

d2

dφ2 − κ1
2

]

ψI(φ) = 0, −π < φ < −π/2, κ1
2 = (M +N)− ǫ̃2

[

d2

dφ2 − κ2
2

]

ψII(φ) = 0, −π/2 < φ < π/2, κ2
2 = (M −N)− ǫ̃2

[

d2

dφ2 − κ1
2

]

ψIII(φ) = 0, π/2 < φ < π, κ1
2 = (M +N)− ǫ̃2 .

(28)

The matching conditions at φ = ±π/2 are determined by the Dirac delta singularities of
the magnetic term of the potential at these points:

ψI(−π/2) = ψII(−π/2) , ψII(π/2) = ψIII(π/2) ,

ψ′
I(−π/2) = ψ′

II(−π/2) + βA0ψI(−π/2) , ψ′
II(π/2) = ψ′

III(π/2) − βA0ψI(π/2) .
(29)

7



Besides, there must be added the periodicity conditions at φ = ±π:

ψIII(π) = ei 2πδψI(−π), ψ′
III(π) = ei 2πδψ′

I(−π) . (30)

When solving this problem, one must have in mind that there are three types of values
the effective energy ǫ̃2 can take (here we are assuming α > 0):

(i) ǫ̃2 > M +N, (ii) M +N > ǫ̃2 > M −N, (iii) M −N > ǫ̃2 . (31)

3.1 Periodic solutions

If we choose δ = 0, we get the periodic solutions. This situation corresponds to the case
where the lattice consists in hexagons matching well around the nanotube [4]. In this
case, the longitudinal field is also vanishing. We have to solve the spectrum in the three
different ranges of the effective energy mentioned above. This is given by the following
simple formulas:

ǫ̃2 > M +N, κj = ikj , j = 1, 2

k1(2k1k2(−1 + cos(k1π) cos(k2π)) + (A2
0β

2 + k21 + k22) sin(k1π) sin(k2π)) = 0 ,

M +N > ǫ̃2 > M −N, κ1 = k1, κ2 = i k2

k1(2k1k2(−1 + cosh(k1π) cos(k2π))− (A2
0β

2 − k21 + k22) sinh(k1π) sin(k2π)) = 0 ,

M −N > ǫ̃2, κj = kj , j = 1, 2

k1(2k1k2(−1+ cosh(k1π) cosh(k2π)) + (−A2
0β

2+k21+k
2
2) sinh(k1π) sinh(k2π)) = 0 .

(32)

The plot of the resulting spectrum as a function of the ‘momentum’ α is displayed in
Fig. 3 for three values of the field intensity, A0 = 1, 5, 10. This is similar to Fig. 2 of Ref. [7]
for constant magnetic fields. The most important feature, regarding the degeneracy, is that
all the energy levels, for any magnetic field intensity, are degenerate at kz = 0 (α = 0).
Notice that for kz = 0 the two effective potentials (24) and (25) are simpler:

V1(φ) =
β2A2

0

4
+ βρ0B(φ), V2(φ) =

β2A2
0

4
− βρ0B(φ) . (33)

This means that both, V1(φ) and V2(φ), are symmetric with respect to the reflection around
the singular points φn = −π

2
+ nπ. We will show in the next section that, indeed in this

situation the energy levels of the periodic solutions must be degenerate.
When |kz| > 0 this symmetry is broken, the degeneration is lifted and all the levels

become non-degenerated. However, for greater values of |kz| there can appear ‘sporadic’
degeneracies at certain values of |kz| as can be appreciated in Fig. 3. The reason is that
in this situation there remains a certain symmetry: observe that in Fig. 2 the effective
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Figure 3: Spectrum of the energies ǫ̃ = ρ0

vF ~
E of periodic solutions as functions of α = ρ0kz for

different intensities of the magnetic field (21): A0 = 1 (left), A0 = 5 (center), A0 = 10 (right) in
units of ρ0q

c~
(this is equivalent to set β = 1 in (27)). The dotted lines in black correspond to the

values M +N , M −N of the finite part (27) of the effective potentials V1, V2.

potentials V1 and V2 are related by means of a reflection, V1(φ) = V2(−φ). As we will see
later, this property will be the origin of sporadic degeneracies in this case.

In Fig. 3 it is also shown the effect of increasing the intensity of the magnetic field on
the spectrum. The gap of the central energy levels is reduced even for larger values of kz
as the magnetic field is bigger. Thus, the metallic behavior is strengthened by the intense
magnetic fields [4, 7].

Of course, we should also mention the trivial symmetry of the spectrum with respect
to the sign of kz.

Once we know the spectrum and solutions for periodic functions, we can compute the
density current jz in the direction of the nanotube axis. According to the notation of (7)
this is given by

jz = Ψ̂(z, φ)†σ2Ψ̂(z, φ) = Ψ(φ)†σ2Ψ(φ) . (34)

The components ψ1 and ψ2 of Ψ are related by (15), ψ1 = i
ǫ̃
A

+ψ2, as far as ǫ̃ 6= 0 (in case
ǫ̃ = 0 the density current will vanish). The component ψ2 will be a solution of the effective
Hamiltonian H2 as written in (26) and in the periodic case it can always be chosen real.
Replacing these components in (34) we have

jz(φ) = −2

ǫ̃
ψ2

A
+ψ2 . (35)

Now, we are in conditions to compute the density current for any periodic solution of
the above spectrum. In Figs. 4–7 it is shown the wavefunctions and their corresponding
currents of periodic solutions for α = ±3, A0 = 5 at four different energies.

Due to the relation of the total current with the dispersion relation [7], when kz = 0
we will have

∫

2π

0

jz(φ) dφ = 0 . (36)
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Figure 4: Squared wave-functions corresponding to positive α at the left in blue, and to negative α
at the center in purple. The corresponding current densities are shown at the right (for positive α
in dashing blue, for α negative in continuous purple line). Values: α = ±3, β = 1, A0 = 5, ǫ̃ = 0.018
(ǫ̃2 < M − |N |).

Figure 5: The same as Fig. 4 but for higher energy: ǫ̃ = 0.831 (M − |N | < ǫ̃2 < M + |N |).

Figure 6: The same as Fig. 4 and Fig. 5 for energy ǫ̃ = 2.464 (M − |N | < ǫ̃2 < M + |N |).

Figure 7: The same as Figs. 4-6 for energy ǫ̃ = 6.396 (M + |N | < ǫ̃2).
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Figure 8: Spectrum of the energies ǫ̃ of anti-periodic solutions as functions of α = ρ0kz for different
values of the magnetic field: A0 = 1 (left), A0 = 5 (center), A0 = 10 (right) and β = 1. The dotted
curves in black correspond to the values M +N and M −N of the finite part (27) of the effective
potentials V1, V2.

However, for kz > 0 (kz < 0) the net current is positive (negative), and it becomes
larger as we increase kz. This phenomenon describes a non null flux of charged particles
corresponding to axial linear momentum kz. It should be remarked that while the positive
current for positive values kz > 0 is restricted to one of the subintervals |φ| < π/2 or
π > |φ| > π/2, the current for negative values kz < 0 will be present just in the other
subinterval. Thus, it is like having a highway with two separate lanes, each one for a
different sign of kz carrier.

3.2 Anti-periodic solutions

The anti-periodic solutions are obtained for the value δ = 1/2. The equations for the
matching and anti-periodic conditions are similar to the previous case (32). A plot of the
resulting spectrum is given in Fig. 8 for three different values of the magnetic field. It is
shown that, for low field intensities (A0 ≈ 1), at kz = 0 the spectrum is not degenerated
(contrary to the periodic case). An example of anti-periodic solution at α = 0 is represented
in Fig. 9. As the field intensity becomes higher the lowest energy level becomes degenerated,
thus enhancing the metallic character (see in Fig. 8 the plots in the center and to the right).
We can also observe that when |kz| is increasing some ‘sporadic’ degeneration can appear
for any field intensity; this is similar to the sporadic degeneracy of periodic solutions, whose
explanation will be given in the next section.
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Figure 9: Components of the anti-periodic eigenfunction Ψ = (i ψ1, ψ2)T (left) at α = 0, for an
effective energy ǫ̃ =

√
2.18 with β = 1, A0 = 1 (left). The (real part of) first component ψ1 is

represented by a dashing line while the second one ψ2 is in continuous curve, the density current
j(φ) is on the right.

4 Degeneracy of the spectrum

4.1 Degeneracy of the spectrum of periodic solutions at kz = 0

As remarked above, when kz = 0 the spectrum of periodic solutions is degenerated. In this
section we will explain the reason for the degeneracy as well as why this degeneracy does
not affect to other solutions (for instance, to anti-periodic solutions). The proof of this
property lies in the supersymmetric character of the effective Hamiltonians given by (14)
in terms of W (φ). According to (11) if kz = 0 the superpotential W (φ) coincides, up to a
multiplicative constant, just with the magnetic potential Az (20),

W (φ) = β Az(φ) . (37)

In this situation, let us enumerate the symmetry properties of W (φ) which are immediate
from Fig. 1 (the angular variable φ is assumed to range over R):
(i) Periodicity with period T = 2π:

W (φ) =W (φ+ 2π) . (38)

(ii) Anti-symmetry with respect to reflections around the points φn = π
2
+ nπ, n ∈ Z:

W (φ+ φn) = −W (−φ+ φn) . (39)

(iii) Anti-periodicity with anti-period A = π:

W (φ) = −W (φ+ π) . (40)

This list of properties for the superpotential leads to corresponding properties of the
associated potentials V1, V2:
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Figure 10: Components of two independent periodic eigenfunctions Ψ = (i ψ1, ψ2)T (left) and
Ψ̃ = (i ψ̃1, ψ̃2)T (center) for a degenerated effective energy ǫ̃ =

√
4.25 at α = 0 with β = 1, A0 = 1.

The (real part of) the first components ψ1 and ψ̃1 are represented by dashing lines while the second
ones ψ2 and ψ̃2 are in continuous lines. Density currents j(φ), j̃(φ) for the solutions Ψ (continuous)
and Ψ̃ (dashing) are represented to the right.

(i′) Both potentials V1, V2 are periodic with period T = 2π:

Vi(φ) = Vi(φ+ 2π), i = 1, 2 . (41)

(ii′) Both potentials V1, V2 are symmetric with respect to reflections around the points
φn = π

2
+ nπ, n ∈ Z:

Vi(φ+ φn) = Vi(−φ+ φn), i = 1, 2 . (42)

(iii′) The partner potentials V1, V2 are π-displaced from each other:

V1(φ) = V2(φ+ π) . (43)

To prove the properties (i′)-(iii′) from (i)-(iii) it is enough to make use of the defining
formulas (18) of V1, V2 in terms of W (φ).

Now, let us concentrate in the periodic solutions of Hamiltonian H2 with potential V2
characterized by the above properties. Since V2 is φn–symmetric, which is compatible with
the 2π–periodicity, this implies that we can classify each periodic solution in φn–symmetric
or φn–anti-symmetric. This means, for example, that if ψ is both 2π-periodic and φ0-
symmetric, then necessarily it should also be φn–symmetric for all n ∈ Z. Or if ψ is both
2π–periodic and φ0–anti-symmetric, then necessarily it should also be φn–anti-symmetric
∀n ∈ Z. As an example, the periodic solution ψ2 shown in Fig. 10 (left, continuous curve)
is φn–symmetric while ψ̃2 is φn–antisymmetric (center, continuous curve).

Let ψ2 be a 2π-periodic eigenfunction of H2, such that for example, it is also φn-
symmetric. Then, according to (15), the function ψ1 = i

ǫ̃
A

†ψ2 will be a solution of H1.
Since A

†(φ) is a φn–anti-symmetric operator, the resulting function ψ1 will be φn–anti-
symmetric. Therefore, the symmetric/antisymmetric character of ψ1 is opposite to that
of ψ2. For example, in Fig. 10 (left) it is seen that the periodic solution ψ1 (dashing) is
φn–anti-symmetric while ψ2 is φn-symmetric (continuous).
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On the other hand, from property (iii′) (43), as H1(φ + π) = H2(φ), we have that
ψ̃2(φ) = ψ1(φ+π) is an eigenfunction ofH2(φ). Therefore, we have the initial eigenfunction
ψ2(φ) and the new eigenfunction ψ̃2(φ) of H2. As each of these eigenfunctions has different
character to the other (one is φn-symmetric while the other is φn–anti-symmetric), they
must be independent, and therefore the eigenvalue is degenerate. As an illustration, the
eigenfunctions ψ2 and ψ̃2, shown in Fig. 10, correspond to the same eigenvalue and they
have different φn–symmetric/anti-symmetric character.

Now, let us consider briefly the case of anti-periodic eigenfunctions of H2. In this
case the function ψ2 satisfies ψ(φ + 2π) = −ψ(φ). If ψ2 is φ0-symmetric, due to the anti-
periodicity it will be anti-symmetric with respect to φ1 = φ0+π. Then, it is easily seen that
ψ2 will be [φ0 + 2nπ]–symmetric and [φ0 + (2n+ 1)π]–anti-symmetric. When we compute
the eigenfunction ψ1 of H1 by ψ1 = i

ǫ̃
A

†ψ2, this eigenfunction will change the character
in φ0 so that it will be [φ0 + 2nπ]–anti-symmetric and [φ0 + (2n + 1)π]–anti-symmetric.
From ψ1 we can get an eigenfunction of H2 by translation: ψ̃2(φ) = ψ1(φ + π). In this
way we get a new eigenfunction ψ̃2 that has the same symmetric character as the initial
ψ2. Therefore, as they could be proportional we can not say whether they are linearly
dependent or independent. In other words, the symmetry does not tell us anything about
the degeneracy of the spectrum of anti-periodic eigenfunctions. An example of anti-periodic
eigenfunction for α = 0 is given in Fig. 9, where it is shown the mixed symmetric/anti-
symmetric character of the components ψ1(φ), ψ2(φ) around the points φn = ±π/2.

4.2 Sporadic degeneracy for kz 6= 0

Besides the degeneracy for periodic solutions that applies to the case α = 0, there is
another type of degeneracy for both periodic and anti-periodic solutions, which depends
on the values of the parameters α 6= 0 and ǫ̃. For instance, one can appreciate in Fig. 3
(left) that for the value (α = 4, ǫ̃ = 4.61) there must be a degeneracy of periodic solutions,
while in Fig. 8 (left), the values (α = 1.5, ǫ̃ = 2.23), (α = 2.5, ǫ̃ = 3.6), (α = 3.5, ǫ̃ = 5) will
correspond to degenerate anti-periodic solutions. As this new type of degeneracy will be
present only for some specific pair of values of (α, ǫ̃), it will be called ‘sporadic’.

The origin of the sporadic degeneracy relies in the symmetry relation V1(−φ) = V2(φ),
as can be seen in Fig. 2. The procedure to characterize the sporadic degeneracy values
(α, ǫ̃) consists in the following steps.

a) Find a symmetric or anti-symmetric solution ψ2 of H2 for an specific pair of values
(α, ǫ̃) (if it does exist!).

b) By means of the operator A
+, following the relation (15), construct the associate

solution ψ1 of H1. Since W (φ), given in (23), has no symmetry for α 6= 0, the
solution ψ1 will not be symmetric nor anti-symmetric.

c) As H1(−φ) = H2(φ), a second solution ψ̃2 of H2 will be given by ψ̃2(φ) = ψ1(−φ).
Then, ψ̃2 and ψ2 must be linearly independent since the initial function ψ2 is sym-
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metric or anti-symmetric while ψ̃2 is not. In conclusion, for such values (α, ǫ̃) there
will be a degeneracy given by ψ2 and ψ̃2.

Therefore, according to the above procedure, in order to obtain an sporadic degeneracy,
it is enough to compute particular solutions with an even/odd symmetry. Such a type of
solutions can be found in a simple way for our particular magnetic field.

Consider for instance the case of anti-periodic solutions. An even anti-periodic solution
is given, for example, by (we hare restricting to the case ǫ̃2 > M +N , α > 0)

ψ2(φ) =















(−1)n k2
k1

sin(k1(φ+ π/2)), −π < φ < −π/2, k1 = 2n

cos(k2 φ), −π/2 < φ < π/2, k2 = 2n+ 1

−(−1)n k2
k1

sin(k1(φ− π/2)), π/2 < φ < π, k1 = 2n

n ∈ N .
(44)

This type of functions satisfy the matching conditions (29). According to the values of k1
and k2 for the solutions given in (28), they are determined by the equations

{

k21 = ǫ̃2 − (M +N) = (2n)2

k22 = ǫ̃2 − (M −N) = (2n + 1)2 .
(45)

Once fixed the integer value n and, for example, the parameters β = 1, A0 = 1, then the
two equations (45) will give us the values (ǫ̃, α) of the corresponding sporadic degeneracy:

Degenerate even solutions : (α = 2n+
1

2
, ǫ̃2 = 8n2 + 4n+ 1), n ∈ N . (46)

Odd anti-periodic solutions are given, for instance, by (also in the case ǫ̃2 > M+N , α > 0)

ψ2(φ) =















(−1)n k2
k1

sin(k1(φ+ π/2)), −π < φ < −π/2, k1 = 2n− 1

sin(k2 φ), −π/2 < φ < π/2, k2 = 2n

(−1)n k2
k1

sin(k1(φ− π/2)), π/2 < φ < π, k1 = 2n− 1

n ∈ N .
(47)

This time, once fixed n, β,A0, the degeneracy values of α, ǫ̃ are given by

{

k21 = ǫ̃2 − (M +N) = (2n − 1)2

k22 = ǫ̃2 − (M −N) = (2n)2 .
(48)

Hence, in this example, for β = 1, A0 = 1, the degeneracy values are

Degenerate odd solutions : (α = 2n− 1

2
, ǫ̃2 = 8n2 − 4n + 1), n ∈ N . (49)
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Figure 11: Anti-periodic functions of a ‘sporadic’ degenerate energy ǫ̃ =
√
5, α = 1.5, β = 1, A0 =

1. The first anti-periodic eigenfunction Ψ = (ψ1, ψ2)T is plotted to the left and the second Ψ̃ =
(ψ̃1, ψ̃2)T to the right. The first components ψ1, ψ̃1 are represented by dashing curves while the
second ones ψ2, ψ̃2 are in continuous curves. Remark that ψ2 is an odd anti-periodic function as
mentioned in (50).

According to (46) and (49), the first values of sporadic degeneracy of anti-periodic solutions
are therefore:

(α = 1.5, ǫ̃2 = 5), odd

(α = 2.5, ǫ̃2 = 13), even

(α = 3.5, ǫ̃2 = 25), odd .

(50)

Such values can be observed in Fig. 8 (left). The independent solutions for the first case
(α = 1.5, ǫ̃2 = 5) are shown in Fig. 11.

The case of sporadic degeneracy for the periodic solutions can be studied in a similar
way. Just for completeness we will supply the first sporadic periodic values for β = 1, A0 =
1,

Even solutions : (α = 4n, ǫ̃2 = 20n2 + 5

4
), n = 1, 2, . . .

Odd solutions : (α = 4n− 2, ǫ̃2 = 20n2 − 20n + 6 + 1

4
), n = 2, 3, . . .

(51)

The first value of degeneracy is the even solution (α = 4, ǫ̃2 = 21.25), which can be
appreciated in Fig. 12 (left). Following this procedure in a straightforward way, a complete
list of all the sporadic degeneracies can be given for this magnetic field.

5 Conclusions

This work has been devoted to explain the degeneracy of the energy levels in a nanotube
under transverse magnetic fields in the continuous approximation of massless Dirac equa-
tion. We have considered the case of a magnetic field described by means of Dirac delta
distributions. This type of magnetic field is not usual in nanotubes but it has been studied
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Figure 12: Periodic functions of a ‘sporadic’ degenerate energy ǫ̃ =
√
21.25, α = 4, β = 1, A0 = 1.

The first anti-periodic eigenfunction Ψ = (ψ1, ψ2)T is plotted to the left and the second Ψ̃ =
(ψ̃1, ψ̃2)T to the right. The first components ψ1, ψ̃1 are represented by dashing curves while the
second ones ψ2, ψ̃2 are in continuous curves. Remark that ψ2 is an even periodic function as
mentioned in (51).

in different configurations related to graphene [12, 13], where our considerations can be
extended for the periodic cases.

The main conclusion is that there exists degeneracy for the periodic solutions corre-
sponding to null axial momentum kz = 0. This type of degeneracy is present under quite
general symmetry conditions, so that it is also found, for example, in the case of a constant
background magnetic field as given in [4, 7] or in elliptic potentials [11]. There can be
another type of more restricted degeneracy that we call ‘sporadic’. This new degeneracy
is present in our example for some periodic and anti-periodic solutions, but it depends on
very special conditions of the magnetic field.

The degeneracy of energy levels has important effects on the electronic properties of the
nanotube. In the case of the degeneracy for kz = 0 and high field intensities, it persists for
the ground level even when |kz | > 0 (see Fig. 3), which gives rise to an special quantum Hall
effect for thick nanotubes [7]. The sporadic degeneracy is only present in higher levels, so
its consequences are not so evident. However, the sporadic degeneracy leads to an increase
of the density of states and it will also drastically affect to the current properties for the
corresponding specific values of (E, kz). In the case of periodic magnetic fields in graphene,
where our considerations still apply, the sporadic degeneracy will suppress a forbidden band
at the degenerating values of (E, kz) giving rise to a wider allowed band.

In order to prove the different types of degeneracy we have made use of the underlying
supersymmetry of the massless Dirac Hamiltonian. The supersymmetric structure of the
massless Dirac Hamiltonian has already been used in some previous works to show different
properties in graphene, nanotubes or fullerenes [4, 10,11,14,15].
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