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a b s t r a c t

A class of operators connecting general two-parametric Pöschl–
Teller Hamiltonians is found. These operators include the so-called
‘‘shift’’ (changing only the potential parameters) and ‘‘ladder’’
(changing also the energy eigenvalue) operators. The explicit action
on eigenfunctions is computed within a simple and symmetric
three-subindex notation. It is shown that thewhole set of operators
close an su(2, 2) ≈ so(4, 2) dynamical Lie algebra. A unitary
irreducible representation of this so(4, 2) differential realization is
characterized.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to investigate and characterize the algebraic properties of the operators
that connect Hamiltonians of the two-parametric Pöschl–Teller (P–T) type. This problem is related to
others known under different terms. For instance, we are dealing with the so-called ‘‘shape-invariant
potentials’’ [1], since the operators involved will change just the parameters in the same family of
potentials. Another name appropriate to the operators in this context is that of ‘‘potential algebras’’ [2],
in order to distinguish them from the invariance algebras of a given Hamiltonian. Some relations in
our study are referred to by ‘‘spectrum-generating algebra’’ [3] due to the fact that some operators
may also change the energy eigenvalues of the Hamiltonians. Perhaps a term that is wide enough to
include many of the above considerations is ‘‘dynamical algebras’’ of P–T hierarchy, as we are dealing
with general operators connecting Hamiltonians in a given family.
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We propose a numerical-symbolic method for the approximation of periodic solutions of a
type of non-linear ODE. The efficiency of our method is contrasted with the harmonic bal-
ance method and with another one which combines the differential transformation
method with Padé approximants on a non trivial example: the relativistic oscillator. It is
shown that our method is computationally more reliable.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

As is well known, ordinary differential equations (ODE) are widely used in a range of very different fields including phys-
ics, engineering, biology, etc. These equations are often non-linear and the determination of explicit or even approximate
solutions is a complex task with a difficulty which depends on the system under study. Fortunately, we have a large number
of methods based in simple concepts and showing a great level of ingenuity to obtain approximate analytic solutions [1–5].

The objective of the present work is to obtain approximate periodic solutions of some ordinary non-linear differential
equations. For the type of equations under our study the most powerful method to obtain approximate solutions is possibly
the harmonic balance method [6–8,10,11]. This technique is useful to determine periods and approximate analytic solutions.
However, it requires of cumbersome analytic calculations which could be quite impractical to obtain a high order of preci-
sion. Fortunately, the use of a recently developed software and new powerful hardware makes these calculations much faster
with a considerable reduction of the CPU times.

In the present paper, we are combining traditional methods of numerical integration [12–14] and symbolic calculus in
order to obtain approximate analytic solutions.

2. Periodic solution

Our objective is the determination of a quasi-analytic approximation of the periodic solution of the following differential
equation:

z00ðxÞ ¼ f ðx; zðxÞ; z0ðxÞÞ; ð1Þ
with initial values given by zðx0Þ ¼ z0; z0ðx0Þ ¼ z00. Here, x 2 (a,b). The function f(x,y,z) is analytic on a given domain of R3, at
least in the variables y and z. Under this condition, it is known that the solution z(x) of Eq. (1) is analytic on some interval I � R

with x0 as interior point.1 Then, we determine the solution of Eq. (1) by determining the coefficients of a Taylor series of the form:
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Abstract
A nonlinear model representing the quantum harmonic oscillator on the three-
dimensional spherical and hyperbolic spaces, S3

κ (κ > 0) and H3
k (κ < 0),

is studied. The curvature κ is considered as a parameter and then the radial
Schrödinger equation becomes a κ-dependent Gauss hypergeometric equation
that can be considered as a κ-deformation of the confluent hypergeometric
equation that appears in the Euclidean case. The energy spectrum and the
wavefunctions are exactly obtained in both the three-dimensional sphere S3

κ

(κ > 0) and the hyperbolic space H3
k (κ < 0). A comparative study between

the spherical and the hyperbolic quantum results is presented.

PACS numbers: 03.65.−w, 03.65.Ge, 02.30.Gp, 02.30.Ik
Mathematics Subject Classification: 81Q05, 81R12, 81U15, 34B24

1. Introduction

The study of quantum problems in curved spherical spaces (positive constant curvature) was
initiated by Schrödinger [1], Infeld [2] and Stevenson [3], in 1940 and 1941. Infeld and
Schild [4] considered in 1945 a similar problem but in a hyperbolic space (negative constant
curvature). Later, Barut et al studied a path integral treatment for the Hydrogen atom in a
curved space of constant curvature, first in the spherical case [5] and then in the hyperbolic
case [6]. Since then other authors have studied similar problems on curved spaces with constant
curvature making use of different approaches [7–28]. Most of these papers are concerned with
fundamental problems (previously studied at the classical level) but some authors have proved
that this matter is also important for the study of certain questions related to condensed matter
physics as, for example, the existence of Landau levels for the motion of a charged particle in
a curved space [29–32] and, more recently, the study of quantum dots [33–37].
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We extend the standard Friedrichs model with an extra term that includes time-dependent interactions. The
time dependence of the poles of the reduced resolvent of the model is explicitly calculated. It is found that these
poles behave as analytical functions of the added time-dependent interaction. The present results are compared
with the ones reported by Kälbermann, concerning the assisted tunnelling of α particles.
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I. INTRODUCTION

The study of the physical and mathematical aspects of
resonance poles has been the subject of continuous effort since
the physical consequences of their existence were dramatically
stressed by Gamow in the earlier days of quantum mechanics
[1]. In the modern literature, the role of resonance poles in
scattering of particles by nuclei and in the decay of nuclei
has been analyzed intensively [2–4]. The connection between
mathematical [5] and physical formulations of the problem
was investigated in Ref. [6] and further explored in a series of
papers by several authors [7–11]. Relevant applications of the
concept of resonance poles in nuclear structure and nuclear
reactions can be found in Refs. [3,12,13].

Generally speaking, the concept of resonance poles is tied
up to the S-matrix formalism [5,14,15]. The Hamiltonian
formulation is, perhaps, better presented in the model of
Friedrichs [16]. For a detailed discussion of this model and
its solutions the reader is kindly referred to a recent review
article [17].

Further generalizations of the Friedrichs model, with
applications to nuclear physics, have been introduced in
Refs. [18,19].

In this work we shall address, from a mathematical oriented
view, the question of the enhancement (or hindrance) of the
resonant structure of a state, as suggested by Kälbermann
[20,21]. In these papers, Kälbermann has discussed, based on
numerical analysis, the assisted tunneling of a wave packet
between square barriers, and concluded that the tunneling
probability is enhanced by the perturbation [20,21].

In order to verify this finding, we shall frame the questions
raised in Refs. [20,21] in the language of the Friedrichs
model. We shall add, to the standard Friedrichs model, a
time-dependent interaction, and feature the solutions in terms
of the parameters of such an interaction. The aim of the
paper is, therefore, to probe the conditions under which a
resonance can be modified by the interaction with external
potentials (or fields), without depending much on the detail of
the interactions.

The present paper is organized as follows. In Sec. II we
review, for the benefit of the readers, the elements entering
the standard Friedrichs model. Section III is devoted to
the mathematical formulation of a one-dimensional model,

corresponding to a finite square well to which we have added
a delta-force-type interaction. Although this is a particular and
very specific model, it shows that the enhancement or reduction
of the lifetime depends solely on certain parameters of the
added interaction. Section IV describes the extension of the
Friedrichs model, which we have developed to accommodate a
time-dependent interaction. Finally, our conclusions are drawn
in Sec. V.

II. FORMALISM

The basic Friedrichs model is the simplest nontrivial exactly
solvable test model for resonances [16]. It admits rather simple
generalizations that may be used as excellent tools to test
a resonance behavior with a wide sort of interactions. For
instance, we have used it in the past in order to study couplings
of fermions with bosons and boson fields [6,19]. A presentation
of some of the most relevant generalizations of this model is
given in Ref. [17].

A brief description of the Friedrichs model is presented
here for the sake of completeness. This description is given
in the energy representation, so that dimensional problems
are avoided. As in any process producing resonances one has
two Hamiltonians: a free or unperturbed Hamiltonian H0 and
a total or perturbed Hamiltonian H = H0 + λV , where V is
the potential describing the interaction and λ is a coupling
constant, which is usually chosen positive. H0 has a simple
continuous spectrum given by R+ = [0,∞) and a bound
state with energy ω0 > 0. The potential V intertwines the
discrete and continuous spectrum of H0. This interaction can
be regarded as an interaction between a discrete boson and a
boson field. Thus, in the energy representation, we can write

H0 = ω0|1〉〈1| +
∫ ∞

0
ω|ω〉〈ω| dω,

(1)

V =
∫ ∞

0
f (ω)[|ω〉〈1| + |1〉〈ω|] dω.

Here, H0|1〉 = ω0|1〉, H0|ω〉 = ω|ω〉, with ω ∈ [0,∞), and
f (ω) is a given function, hereafter referred to as the “form
factor” of the interaction V .
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This paper is the second part of a study of the quantum free particle on spherical and
hyperbolic spaces by making use of a curvature-dependent formalism. Here we study
the analogues, on the three-dimensional spherical and hyperbolic spaces, S3

κ (κ > 0)
and H 3

k (κ < 0), to the standard spherical waves in E3. The curvature κ is considered
as a parameter and for any κ we show how the radial Schrödinger equation can be
transformed into a κ-dependent Gauss hypergeometric equation that can be consid-
ered as a κ-deformation of the (spherical) Bessel equation. The specific properties of
the spherical waves in the spherical case are studied with great detail. These have a
discrete spectrum and their wave functions, which are related with families of orthog-
onal polynomials (both κ-dependent and κ-independent), and are explicitly obtained.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757604]

I. INTRODUCTION

This article can be considered as a sequel or continuation of a previous paper,1 which was
devoted to the study of the quantum free particle on two-dimensional spherical and hyperbolic
spaces making use of a formalism that considers the curvature κ as a parameter. Now, we present a
similar analysis but introducing two changes related with the dimension of the space and with the
states of the quantum free particle we are looking for. Now we work in a three-dimensional space,
and we look for the states analogous to the Euclidean spherical waves, which are determined among
all free particle states by the condition of being separable in the geodesic polar coordinate system.
We follow the approach of Ref. 1, which contains the fundamental ideas and motivations, and we
also use the notation, ideas, and results discussed in some related previous studies.2–5

There are two articles that are considered of great importance in the study of mechanical
systems in a spherical geometry (see Ref. 1 for a more detailed information; we just make here
a quick survey in a rather telegraphic way). Schrödinger studied in 1940 the hydrogen atom in a
spherical space6 and then other authors studied this problem (hydrogen atom or Kepler problem)7–12

or other related questions (as, e.g., the quantum oscillator on curved spaces).13–16 Higgs studied
in 1979 the existence of dynamical symmetries in a spherical geometry17 and since then a certain
number of authors have considered18–39 the problem of the symmetries or some other properties
characterizing the Hamiltonian systems on curved spaces (the studies of Schrödinger and Higgs
were concerned with a spherical geometry but other authors applied their ideas to the hyperbolic
space). In fact, these two problems, the so-called Bertrand potentials, have been the two problems
mainly studied in curved spaces (at the two levels, classical and quantum). Nevertheless, in quantum
mechanics there are some previous problems that are of fundamental importance as, for example,
the quantum free particle or the particle in a spherical well.

a)E-mail: jfc@unizar.es.
b)E-mail: mfran@unizar.es.
c)E-mail: msn@fta.uva.es.
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Abstract

We use the expansion of superalgebras procedure (summarized in the text) to derive Chern–Simons (CS)
actions for the (p, q)-Poincaré supergravities in three-dimensional spacetimes. After deriving the action
for the (p,0)-Poincaré supergravity as a CS theory for the expansion osp(p|2;R)(2,1) of osp(p|2;R), we
find the general (p, q)-Poincaré superalgebras and their associated D = 3 supergravity actions as CS gauge
theories from an expansion of the simple osp(p + q|2,R) superalgebras, namely osp(p + q|2,R)(2,1,2).
© 2011 Elsevier B.V. All rights reserved.

1. Introduction and results

Some important limits in physics can be described in terms of Lie algebra contractions [1–4].
For instance, the simple de Sitter so(4,1) and anti-de Sitter so(3,2) algebras lead by contraction
to the D = 4 Poincaré algebra. The contraction parameter may be related to the AdS4 constant
curvature when SO(3,2) is interpreted as the isometry group of four-dimensional spacetime (it
is 1/R where R is the radius of the universe), or to the square root of the cosmological constant
Λ when the algebra is taken as the starting point for the construction of gravity via gauging (for
so(4,1) the cosmological constant changes sign). The most familiar example — which in fact
motivated the idea [1,2] — is the Galilei algebra as a c→∞ İnönü–Wigner (I-W) contraction
of the Poincaré one. Of course, the procedure also applies to superalgebras: for instance, the
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Here we present analytic results for the Slater sum and the magnetic moment for arbitrary magnetic
field strengths for an assembly of harmonically confined, but initially free, electrons. The relevance of the
results to the generalized Landau diamagnetism of such confined electrons is emphasized.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this brief report harmonically confined but initially free elec-
trons will be treated analytically. In particular, results will be pre-
sented for (a) the Slater sum for such electrons in two dimensions
in a transverse magnetic field of arbitrary strength and (b) the
corresponding free energy and derived magnetic moment. The rel-
evance to a generalization of Landau diamagnetism for such an
inhomogeneous electron assembly is finally stressed.

As a starting point, we refer to the work of March and Tosi [1]
(MT) in which a single Wigner oscillator was studied in a magnetic
field of arbitrary strength. The Hamiltonian adopted by MT takes
the form

Ĥ = 1

2m

(
�p − e �A

c

)2

+ 1

2
k
(
x2 + y2), (1)

where the vector potential �A was chosen specifically to be

�A =
(

−1

2
H y,

1

2
Hx,0

)
. (2)

MT then solved the Bloch equation for the canonical density ma-
trix C , namely

ĤC(�r,�r0, β) = −∂C

∂β
(3)

with β = (kB T )−1 and subject to the completeness boundary con-
dition C(�r,�r0, β = 0) = δ(�r −�r0), generating thereby the pioneering
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Universidad de Valladolid, 47011 Valladolid, Spain.

E-mail addresses: laryg@verizon.net (M.L. Glasser),
luismi@metodos.fam.cie.uva.es (L.M. Nieto).

formula of Sondheimer and Wilson [2], who examined, however,
only the case k = 0 of (1). We merely record in Appendix A the
shape of C(�r,�r0, β) as derived by MT and turn next to the parti-
tion function

pf =
∫

C(�r,�r, β)d�r =
∫

S(�r, β)d�r (4)

where S(�r, β) denotes the Slater sum – the first focus of this Let-
ter.

Using the canonical density matrix of MT, it will be convenient
to write the Slater sum, first of all, in the form following from
Eq. (A.1):

S(�r, β) = f (β)exp
{−4

(
x2 + y2)h(β)

}
. (5)

Putting the confining potential in (1) as

V (�r ) = 1

2

(
x2 + y2) (6)

Eq. (5) has the form

S(�r, β) = f (β)exp

[
−8

k
h(β)V (r)

]
(7)

where, from the work of MT the function h(β) has the explicit
form

f (β) = B

sinhαb
(8)

where B = mωb/2π h̄, ω = eH/2mc, b = (1 + k/mω2)1/2, α = h̄ωβ

and β = (kB T )−1. The other function, h(β), entering (7) is given in
Eq. (A.3).

This special case of the MT model for the partition function∫
S(�r, β)d�r can, in fact, be traced back at least to Darwin [3]. The
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a Departamento de Geometría y Topología, Universidad Complutense de Madrid, 28040 Madrid, Spain
b Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47071 Valladolid, Spain
c Department of Physics, Faculty of Science, Ankara University, 06100 Ankara, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 May 2012
Received in revised form 18 June 2012
Accepted 26 June 2012
Available online 2 July 2012
Communicated by P.R. Holland

Keywords:
Coherent states
Action–angle variables
Ladder operators
Pöschl–Teller potential

This Letter is devoted to the building of coherent states from arguments based on classical action–angle
variables. First, we show how these classical variables are associated to an algebraic structure in terms of
Poisson brackets. In the quantum context these considerations are implemented by ladder type operators
and a structure known as spectrum generating algebra. All this allows to generate coherent states and
thereby the correspondence of classical–quantum properties by means of the aforementioned underlying
structure. This approach is illustrated with the example of the one-dimensional Pöschl–Teller potential
system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Coherent states already appeared in physics in the 1920s, when
Schrödinger noticed the existence of superpositions of quantum
states that exhibit various features like dynamical behaviours quite
similar to those of the classical counterparts. In this sense, coher-
ent states constitute an interesting tool that allows to reproduce,
under some constraints, properties of the classical behaviour of
the system. Although initially this important observation passed
unnoticed, the notion of coherent states was rediscovered in the
frame of quantum optics in 1963. From that time onwards, coher-
ent states have been recognized as an essential concept in many
different domains of physics, and various types of generalizations
have been proposed. Most constructions are either based on group
theory [1,2], imposing some algebraic constraints [3] or even com-
bining both approaches [4].

In this Letter, we intend to formulate in general terms the con-
nection of coherent states to action–angle variables and the rele-
vant algebraic structure in this context. Especially, we will focus on
classical systems with one degree of freedom possessing a periodic
motion. These systems are characterized by means of action–angle
(AA in short) variables, describing a harmonic time dependence.
The harmonic dependence implies that certain Poisson brackets
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jnegro@fta.uva.es (J. Negro).

(PB) rules must be satisfied which are related to algebraic struc-
tures known as spectrum generating algebras (SGA). With respect
to the quantum systems, the stationary bound states have dis-
crete energy values. The transitions to the next (upper or lower)
energy level are characterized by frequencies obtained from the
energy difference. The operators realizing this class of transitions
are called ladder operators and possess some special commutation
relations together with the Hamiltonian of the system. This struc-
ture is called the quantum SGA.

In summary, the harmonic motion associated to a bound clas-
sical state has a classical SGA together with AA variables, while
from the quantum point of view, the frequencies of transitions are
related to the quantum SGA. Both types of algebras describe the
harmonic behaviour in classical and quantum contexts and there-
fore should be applied to establish a correspondence. We plan to
exploit this algebraic connection in order to define and study the
properties of coherent states.

The study of coherent states for periodic systems in terms of
action–angle variables is not new (see for instance the approach
of [5]). However, our motivation is to introduce a consistent defi-
nition of coherent state based on the above mentioned algebraic
structure of the corresponding classical and quantum systems,
based on AA variables. Therefore we are in the line of Refs. [2,6],
but taking into account that the algebraic properties of the classi-
cal system constitute a basic ingredient too.

This problem is also related to the evolution of wave packets in
quantum mechanics in the region of a bounded spectrum that cor-
respond to periodic classical motion (for a review see [7]). There
are some quantum properties such as the spreading and recovering
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The classical spectrum generating algebra for the one-dimensional Kepler–Coulomb system is computed
and a set of two corresponding constants of motion depending explicitly on time is obtained. Such
constants supply the solution to the motion in an algebraic way. The connection of the spectrum
generating algebra and the action-angle variables of the system is also shown.
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1. Introduction

One-dimensional solvable systems in quantum mechanics have
received much attention, either as toy models to approach the
real world or as patterns providing clues for integrable systems in
higher dimensions. There is, however, a limited number of prob-
lems that can be solved exactly, for example the harmonic os-
cillator, Pöshl–Teller, or the Kepler–Coulomb potentials. The most
popular method, already applied since the beginning of quantum
mechanics [1], to deal with this type of potentials was the fac-
torization method, actualized more recently under the name of
supersymmetric quantum mechanics [2,3]. For such systems, this
method allows to compute the spectrum and eigenfunctions in an
algebraic way through structures called potential algebras and/or
spectrum generating algebras [4,5].

However, in classical mechanics the interest in one-dimensional
systems is almost inexistent [6] since they are considered as triv-
ial superintegrable systems. Nevertheless, in this case we can also
define the concept of spectrum generating algebra (SGA) [7] which
will imply that not all these classical systems are at the same level:
some will have SGA and others will not. Then, we will see that
the one-dimensional classical systems allowing for a SGA will have
special constants of motion leading to an algebraic solution of the
motion and also they allow to find easily the action-angle vari-

* Corresponding author.
E-mail addresses: kuru@science.ankara.edu.tr (Ş. Kuru), jnegro@fta.uva.es

(J. Negro).

ables. These classical systems correspond to the one-dimensional
quantum factorizable systems mentioned above and, as their quan-
tum analogues, they should be considered as very special systems.
In this work we will consider the example of the Kepler–Coulomb
(KC) one-dimensional system where we plan to show the interest
and the applications of classical SGA’s. This important example was
not included in a previous classification given in [8], the reason be-
ing that the SGA functions of this system have an special form not
included there. The peculiarities of the classical functions are quite
similar to the factorization operators of the quantum KC system,
this is why we will start this Letter by constructing the SGA of
the quantum KC system in Section 2. Next, in Section 3, we take a
similar procedure in order to find the classical SGA. The algebraic
structures at the quantum and classical levels are very simply re-
lated by replacing Poisson brackets by commutators following the
rule {·,·} → −i[·,·], plus a certain classical limit as we will detail
in the final section. The immediate application of the so obtained
SGA is the building of two constants of motion that depend ex-
plicitly on time. Such constants of motion determine algebraically
the motion for bounded and unbounded trajectories. In the case of
bounded motion, we show how the SGA is closely related to the
action-angle variables. We end this Letter with some conclusions
and remarks on the results here obtained.

2. Ladder operators for the quantum Kepler–Coulomb system

In this section we will derive the spectrum generating algebra
of the quantum KC system following the factorization method (for
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Abstract. The intertwining technique has been widely used to study the Schrödinger
equation and to generate new Hamiltonians with known spectra. This technique can be
adapted to find the bound states of certain Dirac Hamiltonians. In this paper the system
to be solved is a relativistic particle placed in a magnetic field with cylindrical symmetry
whose intensity decreases as the distance to the symmetry axis grows and its field lines are
parallel to the x− y plane. It will be shown that the Hamiltonian under study turns out to
be shape invariant.
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1 Introduction

The intertwining technique, also called Supersymmetric Quantum Mechanics (SUSY QM), is
a widespread method used to generate exactly solvable Hamiltonians departing from a given
initial one and can be employed as well to solve a certain set of Hamiltonians in a closed way,
among other applications. In the simplest case (1-SUSY QM) the new potentials have similar
spectra as the original one, namely, they might differ at most in the ground state energy.
Examples of potentials generated by this technique are those which arise when adding a bound
state to the free particle Hamiltonian (hyperbolic Pöschl–Teller) [14] or the Abraham–Moses–
Mielnik potentials which are isospectral to the harmonic oscillator [1, 13, 15]. This method has
been also applied successfully to the radial part of the hydrogen atom potential [1, 7, 13, 18],
the trigonometric Pöschl–Teller potentials [3], among many others.

To apply the technique [8] we start from two one-dimensional Schrödinger Hamiltonians

Hi = −1

2

d2

dx2
+ Vi(x), i = 0, 1,

where H0 is known. Now let us suppose the existence of a differential operator A†1 which satisfies

H1A
†
1 = A†1H0, A†1 =

1√
2

(
− d

dx
+W1(x)

)
. (1)

Since the operator A†1 is of first order, the technique is known as 1-SUSY QM and the func-
tion W1(x) as the superpotential. It is also said that the potentials V0(x) and V1(x), whose

Hamiltonians are intertwined by the operator A†1, are supersymmetric partners.
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