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a b s t r a c t

We propose an iterative method to solve some non-linear ordinary differential equations.
Comparing on the Mathieu, van der Pol and Hill equation of fourth order, we see that this
method is much more efficient than the well known methods by Lyapunov or Picard.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

We intend to determine explicit approximate solutions, with given initial values, of equations of the type

z00ðxÞ þx2zðxÞ ¼ f ðx; z; z0Þ; zðxaÞ ¼ a; z0ðxaÞ ¼ b: ð1Þ

In particular, we shall focus our attention in the search for periodic solutions. There exists several perturbative methods to
determine explicit approximate solutions. Most of them require a small perturbative parameter. In this context, we can men-
tion for instance the Lindstedt–Poincaré, Krylov–Bogolubov–Mitropolskii perturbation methods and also the multi-time
expansion method [1]. When a perturbative parameter cannot be found, one can use the harmonic balance to obtain periodic
approximations [2,3]. The need of efficient ways to find approximate solutions in the case of strongly nonlinear equations
has been stressed in [4–6]. Apart from those mentioned general methods, there exist a more specific approach for some
equations like the van der Pol equation [7–12]. Different iteration schemes are discussed in [13,14]. The implementation
of all these methods of resolution have a certain degree of difficulty that can be somehow overcome with the use of a soft-
ware like Mathematica. In this article, we present an effective calculation tool, which is conceptually quite simple and is in-
spired in the method of successive approximations of Picard–Liouville [12–15].

In this kind of articles in which an analytic solution is search using iterations a study of the uniform convergence of the
approximate solutions to the exact solution is an absolute requirement. This result is shown in Appendix A.

This paper is organized as follows: In Section 2, we propose our iterative method. Sections 3–5 are devoted to applications
to given linear (Mathieu or Hill of fourth order) or non-linear (van der Pol) differential equations. In addition, we compare
our results with those obtained with Lyapunov and Picard methods. Finally, in Appendix A, we discuss the convergence of
our method.

2. The iterative method

We shall obtain explicit solutions of Eq. (1), where f is a continuous function of three variables continuous on a domain
that includes the range xa 6 x 6 xb for the first variable. Inspired in the Picard method [12,15], we try to solve Eq. (1) by
iteration. At the kth step (1) looks like
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Models including electron correlation in relation to Fock’s proposed expansion
of the ground-state wave function of He-like atomic ions
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Here attention is first drawn to the importance of gaining insight into Fock’s early proposal for expanding
the ground-state wave function for He-like atomic ions in hyperspherical coordinates. We approach the problem
via two solvable models, namely, (i) the s-term model put forth by Temkin [Phys. Rev. 126, 130 (1962)] and
(ii) the Hookean atom model proposed by Kestner and Sinanoglu [Phys. Rev. 128, 2687 (1962)]. In both cases
the local kinetic energy can be obtained explicitly in hyperspherical coordinates. Separation of variables occurs
in both model wave functions, though in a different context in the two cases. Finally, a k-space formulation
is proposed that should eventually result in distinctive identifying characteristics of Fock’s nonanalyticities for
He-like atomic ions when both electrons are close to the nucleus.

DOI: 10.1103/PhysRevA.84.062119 PACS number(s): 03.65.Ge, 01.55.+b, 02.30.Hq

I. INTRODUCTION

Because of the present intractability of the exact analytic
solution of the Schrödinger solution for the ground-state of
He-like atomic ions, we approach the problem here via two
solvable models. The first model we discuss was put forth by
Kestner and Sinanoglu [1], who proposed the replacement of
the Coulomb confinement form of the external potential Vext(�r)
by a harmonic restoring potential given by 1

2kr2 but retaining
the full Coulombic interaction e2/r12. It was natural to refer
to this model as the two-electron Hookean atom. The model’s
great merit is that the center-of mass motion can be separated
from the relative motion (see, for instance, Ref. [2]). Kais
et al. quote the exact ground-state wave function �(�r1,�r2) for
the solvable case of the Hamiltonian HHooke = −∇2

1 − ∇2
2 +

e2/r12 + (k/2)(r2
1 + r2

2 ) for k = 1
4 a.u. as

�(�r1,�r2) = N0
(
1 + 1

2 |�r1 − �r2|
)

exp
[ − 1

4

(
r2

1 + r2
2

)]
, (1)

which corresponds to ground-state energy E0 =
2 a.u. (EHF = 2.039 325 a.u., where EHF represents the
Hartree-Fock energy). Following Fock’s proposal [3], we
immediately rewrite Eq. (1) in hyperspherical coordinates R,
�, and α defined by

R =
√

r2
1 + r2

2 , r1 = R cos α,
(2)

r2 = R sin α, cos � = �r1 · �r2

r1r2

*laryg@verizon.net
†luismi@metodos.fam.cie.uva.es

to obtain

�(R,α,�) = �g(R) − √
1 − sin 2α cos �

∂�g(R)

∂R
, (3)

where N0 exp[− 1
4R2] = �g(R).

For He-like atomic ions Fock proposed expanding the
ground-state wave function for small R in a form involving
not only non-negative-integer powers of R, but also positive-
integer powers of ln R. We refer to the important subsequent
work of Refs. [4–9], which have demonstrated the convergence
and usefulness of Fock’s expansion. It is also relevant here to
note two recent papers on the Hookean model [10,11].

Here we note that while Eq. (3) is not directly separable
in hyperspherical coordinates, it is the sum of a part �g(R),
independent of the angles α and �, plus a piece with an
R dependence determined by ∂�g(R)/∂R, times the known
function

√
1 − sin 2α cos � of angles α and �. Clearly, both

R-dependent parts can be expanded to all orders in R2 and
there are no logarithmic terms at small R. Since for small R

both electrons are near the origin of harmonic confinement, it is
clear that e2/r12 alone for small r12 does not lead to Fock-like
nonanalytic terms for small r . Thus, Coulomb confinement
with Vext(r) = −Z/r replacing the harmonic form needs to be
invoked in He if Fock’s nonanalytic behavior is to be recovered.

This leads us directly to a second model, proposed by
Temkin [12], which is now referred to as the Temkin-Poet [13]
model for He-like atomic ions. Particularly relevant to this
study is Ref. [14], where it is pointed out that the wave function
considered by Howard and March [15], namely,

�HM(�r1,�r2) = C exp

[
− (Z − 1/2)(r1 + r2) + |r1 − r2|

2

]
,

(4)
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Some time ago, Thies et al. showed that the Gross-Neveu model with a bare mass term possesses a

kink-antikink crystalline phase. Corresponding self-consistent solutions, known earlier in polymer

physics, are described by a self-isospectral pair of one-gap periodic Lamé potentials with a Darboux

displacement depending on the bare mass. We study an unusual supersymmetry of such a second-order

Lamé system, and show that the associated first-order Bogoliubov-de Gennes Hamiltonian possesses its

own nonlinear supersymmetry. The Witten index is ascertained to be zero for both of the related exotic

supersymmetric structures, each of which admits several alternatives for the choice of a grading operator.

A restoration of the discrete chiral symmetry at zero value of the bare mass, when the kink-antikink

crystalline condensate transforms into the kink crystal, is shown to be accompanied by structural changes

in both of the supersymmetries. We find that the infinite period limit may or may not change the index.

We also explain the origin of the Darboux-dressing phenomenon recently observed in a nonperiodic

self-isospectral one-gap Pöschl-Teller system, which describes the Dashen, Hasslacher, and Neveu

kink-antikink baryons.

DOI: 10.1103/PhysRevD.83.065025 PACS numbers: 11.30.Pb, 03.65.�w, 11.10.Kk, 11.10.Lm

I. INTRODUCTION

The Gross-Neveu (GN) model [1–3] is a remarkable
(1þ 1)-dimensional theory of self-interacting fermions
that has no gauge fields or gauge symmetries, but exhibits
some important features of quantum chromodynamics,
namely, asymptotic freedom, dynamical mass generation,
and chiral symmetry breaking [4]. It has been widely
studied over the years and the richness of its properties
is still astonishing. Some time ago, Thies et al. showed
that at finite density, the ground state of the model with a
discrete chiral symmetry is a kink crystal [5], while the
kink-antikink crystalline phase was found in the GN
model with a bare mass term [6]. Then, Dunne and
Basar derived a new self-consistent inhomogeneous con-
densate, the twisted kink crystal in the GN model with
continuous chiral symmetry [7,8]. On the other hand, the
relation of the GN model with the sinh-Gordon equation
and classical string solutions in AdS3 has been observed
recently [9,10].

These two classes of the results seem to be different, but
both are rooted in the integrability features of the GN
model, and may be related to the Bogoliubov-de Gennes
(BdG) equations incorporated implicitly in its structure. It
is because of these properties that the model finds many
applications in diverse areas of physics. Particularly, the
model has provided very fruitful links between particle and
condensed matter physics, see [11–13].

The origin of the model itself may also be somewhat
related to the BdG equations. We briefly discuss these
equations to formulate the aim of the present paper.

The BdG equations [14] in the Andreev approximation
[15] is a set of two coupled linear differential equations,

which can be presented in the form of a stationary Dirac-
type matrix equation,

Ĝ 1c ¼ !c ; Ĝ1 ¼ a�1

1

i

d

dx
� �2�ðxÞ: (1.1)

The scalar field �ðxÞ is determined via a self-consistency
condition, which is often referred to as a gap equation.
Equation (1.1) arose in the theory of superconductivity by
linearizing the nonrelativistic energy dispersion
(in the absence of magnetic field), or, equivalently, by
neglecting the second derivatives of the Bogoliubov
amplitudes, see [16]. A constant a is proportional there
to the Fermi momentum ℏkF. In what follows, we put
a ¼ 1 and ℏ ¼ 1.
The Lagrangian of the GN model of the N species of

self-interacting fermions is

L GN ¼ �c ði��@� �m0Þc þ 1
2g

2ð �c c Þ2; (1.2)

where g2 is a coupling constant, the summation in the
flavor index is suppressed, and a bare mass term �m0,
which breaks explicitly the discrete chiral symmetry
c ! �5c of the massless model, is included.1 It is the
two-dimensional version of the Nambu-Jona-Lasinio
model [17] (with continuous chiral symmetry reduced to
the discrete one). The latter is based on an analogy with
superconductivity, and was introduced as a model
of symmetry breaking in particle physics. There are
two equivalent methods to seek solutions for the

1The investigation of model (1.2) is motivated in [6] by a
massive nature of quarks; there, the ’t Hooft limit N ! 1,
Ng2 ¼ const, is considered.
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The absence of backscattering in metallic nanotubes as well as perfect Klein tunneling in potential

barriers in graphene are the prominent electronic characteristics of carbon nanostructures. We show that

the phenomena can be explained by a peculiar supersymmetry generated by a first order Hamiltonian and

zero-order supercharge operators. Like the supersymmetry associated with second order reflectionless

finite-gap systems, it relates here the low-energy behavior of the charge carriers with the free-particle

dynamics.

DOI: 10.1103/PhysRevD.83.047702 PACS numbers: 72.80.Vp, 11.30.Pb, 73.63.Fg

Graphene is a genuine two-dimensional material com-
posed of the carbon atoms that form a honeycomb lattice.
Three of the valence electrons of each carbon atom par-
ticipate in the interatomic interaction, while the fourth one
contributes to the conductivity of the crystal. Graphene has
been studied theoretically for a long time, see e.g., [1,2].
However, its experimental observation [3] triggered a real
boom of both theoretical and experimental analysis [4–6].

The material manifests extraordinary electronic proper-
ties, which are the consequence of an unusual dynamics of
the low-energy charge carriers. It was pointed out in [2]
that the tight-binding description of the system is reduced
to the massless Dirac equation in the low-energy approxi-
mation. This makes graphene an ideal test field for
ð2þ 1Þ-dimensional QED [6]; due to the low Fermi veloc-
ity vF, c=vF � 300, it is possible to simulate relativistic
effects in condensed matter systems which would be un-
reachable experimentally otherwise.

It was predicted [7,8] that the scattering of the relativis-
tic electrons on the potential barrier is qualitatively differ-
ent from the nonrelativistic case. The particles can tunnel
the barrier without reflection, provided that its height tends
to infinity. This is in contrast to the nonrelativistic regime
where the tunneling would be exponentially suppressed
[8]. This phenomenon, known as Klein tunneling, is not
experimentally realizable with elementary particles nowa-
days due to the extreme electric field needed to observe the
predicted difference between relativistic and nonrelativis-
tic scattering [9].

The scattering of the low-energy quasiparticles in gra-
phene on the barrier with translational symmetry in one
dimension was analyzed in [9–11]. The absence of back-
scattering was noticed for normal incidence. The effect is
independent of the height of the barrier and, hence, is
testable experimentally [12]. A similar phenomenon was
observed earlier [13] and discussed theoretically [14–16]
in the context of electron transport in carbon nanotubes.

The perfect transmission of the low-energy charge carriers
occurs in metallic nanotubes despite the presence of a
scattering potential generated by impurities. The absence
of backscattering was understood as a consequence of
topological singularity identified with a Dirac point, see
[17,18], or as a result of the pseudospin conservation [9].
We provide here a simple, alternative explanation for the

absence of backscattering in the carbon nanostructures
within the framework of supersymmetric quantum mechan-
ics. We shall discuss a broad class of potentials in graphene
as well as in the metallic nanotubes with the range exceed-
ing the interatomic distance.
The honeycomb lattice is a superposition of two trian-

gular sublattices, A and B. The eigenstate � of the
Hamiltonian can be then written as � ¼ cA�A þ cB�B,
where �A and �B are atomic wave functions of the sub-
lattices, whereas cA and cB are slowly varying amplitudes.
� is a Bloch function, which acquires a nontrivial phase
factor when shifted by a translation vectorR of the Bravais
lattice,�ðk;xþRÞ ¼ eikR�ðk;xÞ: Fermi surface of gra-
phene is formed by discrete points. There are six of them in
the first Brillouin zone, situated in its corners, see Fig. 1. In
the analysis of the low-energy behavior of the charge
carriers, it is sufficient to consider just two of them, de-
noted as Dirac points K and K0 ¼ �K. The remaining
four Dirac points do not represent distinct electronic states.
They can be obtained either fromK orK0 by translations in
the reciprocal lattice.
In the vicinity of Dirac points, the behavior of the system

is described by the massless Dirac equation. When the
effective Hamiltonian is considered in the valley of the
point K and expanded up to the terms linear in the mo-
menta, the energy eigenvalue equation acquires the form
[2] (we put ℏ ¼ 1)

Hc ¼ �ivFð�1@x þ �2@yÞc ¼ Ec ; (1)

where �1;2 are Pauli matrices. Spinor c reads explicitly

c ¼ ðcA; cBÞtei�kx, where �k ¼ k�K and t is a trans-
position. Degree of freedom associated with the compo-
nents cA and cB is called pseudospin, see [4,5].*mikhail.plyushchay@usach.cl
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We present here a relation of different types of Friedrichs models and their use in the description and com-
prehension of resonance phenomena. We first discuss the basic Friedrichs model and obtain its resonance
in the case that this is simple or doubly degenerated. Next, we discuss the model with N levels and show
how the probability amplitude has an oscillatory behavior. Two generalizations of the Friedrichs model are
suitable to introduce resonance behavior in quantum field theory. We also discuss a discrete version of the
Friedrichs model and also a resonant interaction between two systems both with continuous spectrum. In an
appendix, we review the mathematics of rigged Hilbert spaces.

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The Friedrichs model is a model aimed to describe the basic features of resonance phenomena. The basic
idea is considering resonances associated to a Hamiltonian pair {H0, H}, where H0 is the Hamiltonian
for the “non perturbed” dynamics. H0 has a simple non-degenerate absolutely continuous spectrum that
coincides with the positive semiaxis. In addition,H0 has at least an eigenvalue imbedded in the continuous
spectrum. The total or “perturbed” Hamiltonian has the form H = H0 + λV , where V is a potential and λ
a coupling parameter that it is usually taken to be real (to preserve the self adjointness of H) and positive.
The potential depends on a form factor function f(ω), which determines the existence and properties of
the resonance. The action of the potential is to transform the bound state into a resonance, characterized by
a point in the complex plane, as shall be described below. This point depends analytically on the coupling
parameter λ. This is the basic description of the model as originally introduced by Friedrichs in 1948 [50].

The first step to show that the Fridrichs model is an excellent device in order to understand the machin-
ery of decay in Quantum Mechanics accessible to physicists was given by Horwitz and Marchand [59].
After that, there were given several generalizations of the original model for various purposes including a
description of unstable theory of fields.

In the present review, we intend to discuss most of the known versions of The Friedrichs model together
their applications to model various situations in which quantum decay appears.

The Fridrichs model was conceived as mathematically rigorous and exactly solvable so that it could
well serve as a toy model for a precise description of quantum decay. Also its possible generalizations are
enormous in number and vast in applications. The present review is a first step to collect these general-
izations. In order not to make this paper excessively long, we have selected some of these generalizations
and not included a few ones. Our selection has been biased by our own work in the field. Examples of
generalizations of the Fridrichs model that we have not included in our review are:

∗ Corresponding author E-mail: manuelgadella1@gmail.com

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



JOURNAL OF MATHEMATICAL PHYSICS 52, 072104 (2011)

The quantum free particle on spherical and hyperbolic
spaces: A curvature dependent approach
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The quantum free particle on the sphere S2
κ (κ > 0) and on the hyperbolic plane H 2

κ

(κ < 0) is studied using a formalism that considers the curvature κ as a parameter.
The first part is mainly concerned with the analysis of some geometric formalisms
appropriate for the description of the dynamics on the spaces (S2

κ , IR2, H 2
κ ) and

with the transition from the classical κ-dependent system to the quantum one using
the quantization of the Noether momenta. The Schrödinger separability and the
quantum superintegrability are also discussed. The second part is devoted to the
resolution of the κ-dependent Schrödinger equation. First the characterization of
the κ-dependent “curved” plane waves is analyzed and then the specific properties
of the spherical case are studied with great detail. It is proved that if κ > 0 then a
discrete spectrum is obtained. The wavefunctions, that are related with a κ-dependent
family of orthogonal polynomials, are explicitly obtained. C© 2011 American Institute
of Physics. [doi:10.1063/1.3610674]

I. INTRODUCTION

The correct formulation of quantum mechanics on spaces of constant curvature is a prob-
lem that can lead to important difficulties. There are some fundamental quantum questions, well
stated in the Euclidean space, that become difficult to formulate on a curved space. The study of
these questions is important, not only for extending our knowledge of certain fundamental points
of quantum mechanics, but also because it is very convenient for the construction of more gen-
eral relativistic theories.1, 2 In addition, this matter has also become important for the study of
certain questions arising in applied nonrelativistic quantum mechanics. We mention here two ex-
amples related with two-dimensional quantum mechanics and with condensed matter physics. In
the first case (motion of a particle on a two-dimensional surface) the existence of Landau levels
for the motion of a charged particle under perpendicular magnetic fields has been also studied
for the case of non-Euclidean geometries.3–6 Concerning the second point, the study of quan-
tum dots has also lead to the use of models based in quantum mechanics in spaces of constant
curvature.7–11

The first step was probably given by Schrödinger who made use of a factorization method12

for the study of the hydrogen atom in a spherical geometry. Then Infeld13 and Stevenson14 studied
the same system and Infeld and Schild15 considered this problem in an open universe of con-
stant negative curvature. Other more recent papers on the hydrogen atom in a curved space are

a)Electronic mail: jfc@unizar.es.
b)Electronic mail: mfran@unizar.es.
c)Electronic mail: msn@fta.uva.es.
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 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

157.88.38.44 On: Mon, 29 Dec 2014 09:49:18

http://dx.doi.org/10.1063/1.3610674
http://dx.doi.org/10.1063/1.3610674
http://dx.doi.org/10.1063/1.3610674
mailto: jfc@unizar.es
mailto: mfran@unizar.es
mailto: msn@fta.uva.es


JOURNAL OF MATHEMATICAL PHYSICS 52, 023521 (2011)

On a class of n-Leibniz deformations of the simple
Filippov algebras
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We study the problem of infinitesimal deformations of all real, simple, finite-
dimensional Filippov (or n-Lie) algebras, considered as a class of n-Leibniz algebras
characterized by having an n-bracket skewsymmetric in its n − 1 first arguments. We
prove that all n > 3 simple finite-dimensional Filippov algebras (FAs) are rigid as
n-Leibniz algebras of this class. This rigidity also holds for the Leibniz deformations
of the semisimple n = 2 Filippov (i.e., Lie) algebras. The n = 3 simple FAs, how-
ever, admit a nontrivial one-parameter infinitesimal 3-Leibniz algebra deformation.
We also show that the n ≥ 3 simple Filippov algebras do not admit nontrivial central
extensions as n-Leibniz algebras of the above class. C© 2011 American Institute of
Physics. [doi:10.1063/1.3553797]

I. INTRODUCTION

Lie algebras can be generalized by relaxing the skewsymmetry of the Lie bracket. This leads
to the Leibniz (or Loday’s) algebras L ,1–4 defined as a vector space L endowed with a bilinear
operation L × L → L that satisfies the Leibniz identity

[X, [Y, Z ]] = [[X,Y ], Z ] + [Y, [X, Z ]] ∀X,Y, Z ∈ L , (1.1)

which states that adX = [X, ] is a derivation of the Leibniz bracket. Lie algebras g are the special
class of Leibniz algebras for which [X,Y ] = −[Y, X ] ∀X,Y . Since the Leibniz algebra bracket is
not skewsymmetric, left and right derivations are not (anti)equivalent and correspondingly there are
two possible versions of the Leibniz identity; Eq. (1.1), which we shall adopt, is the left Leibniz
identity and correspondingly defines a left Leibniz algebra.

Lie algebra deformations5, 6 can be easily generalized to the Leibniz case. Infinitesimal Leibniz
algebra deformations are defined by a deformed bracket [X1, X2]t ,

[X1, X2]t = [X1, X2] + tα(X1, X2), (1.2)

such that α(X1, X2) is a bilinear L -valued map α : L ⊗ L → L , α : (X1, X2) �→ α(X1, X2) and
[X1, X2]t satisfies (1.1) (for deformations of Lie algebras g, α would be skewsymmetric in its two
arguments). The nontrivial inequivalent infinitesimal deformations of Lie and Leibniz algebras are
classified by the elements of the second cohomology groups H 2

ad (g, g) and H 2
ad (L ,L ), respectively.

The Leibniz algebra cohomology has been discussed in Refs. 1–3 and 7 (there for right L s) and in
Ref. 8. The cohomology complex (C•(L ,L ), δ) becomes the Lie algebra one (C•(g, g), δ) when
L = g and, as a result of the antisymmetry, the cochains are also required to be antisymmetric.
But, since Lie algebras are also Leibniz, it is also possible to look for Leibniz deformations of Lie
algebras when viewed as Leibniz ones. This may result in the appearance of more deformations,
a fact recently discussed and observed in Ref. 9 for the nilpotent three-dimensional Heisenberg
algebra. In fact, and for a symmetric representation of L (Refs. 2 and 1), there is a homomorphism2

a)Author to whom correspondence should be addressed. Electronic mail: j.a.de.azcarraga@ific.uv.es.
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We introduce in this paper the contractions Gc of n-Lie (or Filippov) algebras G

and show that they have a semidirect structure as their n = 2 Lie algebra counter-
parts. As an example, we compute the nontrivial contractions of the simple An+1

Filippov algebras. By using the İnönü–Wigner and the generalized Weimar-Woods
contractions of ordinary Lie algebras, we compare (in the G = An+1 simple case)
the Lie algebras Lie Gc (the Lie algebra of inner endomorphisms of Gc) with certain
contractions (Lie G)I W and (Lie G)W−W of the Lie algebra Lie G associated with G.
C© 2011 American Institute of Physics. [doi:10.1063/1.3533944]

I. INTRODUCTION

In 1985, Filippov1, 2 initiated the study of certain linear algebras (called n-Lie algebras by
him) endowed with a completely antisymmetric bracket with n entries that satisfies a characteristic
identity, the Filippov identity. These n-Lie or Filippov algebras (FAs) G reduce for n = 2 to ordinary
Lie algebras g.

The properties of Filippov algebras1 have been studied further in parallel with those of the
Lie algebras, specially by Kasymov3, 4 and Ling5 (see Ref. 6 for a review). It has been shown, for
instance, that it is possible to define solvable ideals, simple and semisimple Filippov algebras, etc.
Semisimple FAs satisfy a Cartan-like criterion4 and, as in the Lie algebra case, they are given by the
direct sums of simple ones. One result, however, in which FAs differ significantly from their n = 2
Lie algebra counterparts is that for each n > 2 there is only one complex simple finite Filippov
algebra,1, 5 which is (n + 1)-dimensional. The real Euclidean simple n-Lie algebras An+1, which are
constructed on Euclidean (n + 1)-dimensional vector spaces, are thus the only (n > 2)-Lie (Filippov)
algebra generalizations of the simple so(3) Lie algebra. Similarly, the simple pseudo-Euclidean ones
may be considered as n > 2 generalizations of so(1, 2).

Other properties of FAs, such as deformations (or, e.g., central extensions) may be studied.
As in the general and Lie algebra cases,7, 8 deformations are associated with FA cohomology. The
Filippov algebra cohomology suitable for deformations of Filippov algebras was given in Ref. 9
in the context of Nambu–Poisson algebras (see further Refs. 10, 11, and 12); the FA cohomology
generalizes the Lie algebra cohomology complexes (see also Ref. 6). The FA cohomology is not
completely straightforward. For instance, for n > 3 it turns out that the p-cochains are mappings

α p : ∧n−1G ⊗ p· · · ⊗ ∧n−1 G ∧ G → R (e.g., in the cohomology suitable for central extensions of
FAs) rather than α p : ∧pg → R as they would be for Lie algebras g. Thus, it is convenient to label
the p-cochains by the number p of arguments X ∈ ∧n−1G that they contain rather than by the
number of elements of G itself (the X ’s were called fundamental objects in Ref. 12). It has been
proved recently12 that there is a Whitehead lemma for Filippov algebras: semisimple FAs do not have
nontrivial central extensions and are moreover rigid, i.e., they do not admit nontrivial deformations.
As a result, the Whitehead lemma holds true for all n-Lie semisimple FAs, n ≥ 2.

a)Electronic mail: j.a.de.azcarraga@ific.uv.es.

0022-2488/2011/52(1)/013516/24/$30.00 C©2011 American Institute of Physics52, 013516-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

157.88.38.44 On: Fri, 19 Dec 2014 16:10:41

http://dx.doi.org/10.1063/1.3533944
http://dx.doi.org/10.1063/1.3533944
mailto: j.a.de.azcarraga@ific.uv.es


JOURNAL OF MATHEMATICAL PHYSICS 52, 063509 (2011)

Spectrum generating algebras for the free motion in S3

M. Gadella,1,a) J. Negro,1,b) L. M. Nieto,1,c) G. P. Pronko,2,d) and
M. Santander1,e)

1Department of FTAO, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid,
Spain
2Department of Theoretical Physics, IHEP. Protvino, Moscow Region 142280, Russia

(Received 13 December 2010; accepted 16 May 2011; published online 17 June 2011)

We construct the spectrum generating algebra (SGA) for a free particle in the three-
dimensional sphere S3 for both classical and quantum descriptions. In the classical
approach, the SGA supplies time-dependent constants of motion that allow to solve
algebraically the motion. In the quantum case, the SGA includes the ladder op-
erators that give the eigenstates of the free Hamiltonian. We study this quantum
case from two equivalent points of view. C© 2011 American Institute of Physics.
[doi:10.1063/1.3598407]

I. INTRODUCTION

The notion of the spectrum generating algebra (SGA), sometimes called non-invariance algebra,
was introduced many years ago.1–3, 19 In the context of quantum mechanics, the idea of the SGA
consists in reducing the construction of the whole Hilbert space for a given system to a problem
of representation theory. The knowledge of the symmetry (usually called “dynamical symmetry”)
of a problem allows to solve it only partly: its representations gives the subspace of the whole
Hilbert space of eigenstates corresponding to a fixed energy. The further extension to the SGA needs
to introduce ladder operators that change the energy, i.e., operators that do not commute with the
Hamiltonian (it is the reason to call this construction non-invariance algebra). At the very best,
the whole set of operators —those generating the dynamical algebra plus the ladder operators—
may form a finite-dimensional non-compact algebra whose representation gives the Hilbert space
of the system. In this respect, the symmetry algebra of the Hamiltonian plays the role of the Cartan
subalgebra, while the additional operators of the SGA, which do not commute with the Hamiltonian,
play the role of the Borel elements.

In the classical frame, the symmetry algebra provides constants of motion which are functions
of the dynamical variables characterizing the possible trajectories. However, the motion is obtained
from another kind of constants of motion that include explicitly the time. Such constants come from
the elements of the SGA “not commuting” (in the sense of Poisson brackets) with the Hamiltonian.5

The main purpose of this paper is using the SGA technique to solve the spectral problem related
with the quantum Hamiltonian of the free motion in the three-dimensional sphere S3, embedded
in the four-dimensional coordinate space R4, which has a pure discrete spectrum.4 This problem
is already nontrivial, interesting by itself and will provide important clues for the extension of the
SGA in the study of more general quantum systems evolving on configuration spaces with constant
curvature. In the case of the free particle in S3, it is well known that the symmetry algebra is so(4)
and our task is to construct the ladder operators which do not commute with the Hamiltonian. As we
shall see below in order to achieve this goal we will need to involve, apart from symmetry operators,
also the elements of the homogeneous space of the group SO(4). The main result obtained in this
work is the explicit construction of a SGA isomorphic to so(4, 2).
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